Fluorescent In Situ Hybridization Techniques in Pathology: Principle, Technique and Applications

  • Pranab Dey


Fluorescent in situ hybridization (FISH) technique is a popular molecular technique. Here the double-stranded DNA is at first converted into single-stranded DNA, and then subsequently a fluorescent-tagged probe is used to visualize the target DNA part. It is possible to do FISH on the paraffin-embedded tissue material, and therefore it can be used in archival materials. FISH technique bypasses the tedious cell culture technique. Most importantly cytogenetic abnormality of the cells can be demonstrated along with the morphology of the cell, and these two can be correlated. The chapter describes the basic principles, advantages, limitations, protocols and applications of FISH. In addition, troubleshooting of FISH has been also described here. Comparative genomic hybridization (CGH) provides the information on global view of gain or loss of chromosome of the tumor genome. The present chapter elucidates the basic principle, protocol and applications of CGH. The variant of CGH is array-based CGH (aCGH). In aCGH a specific target DNA sequence is used instead of metaphase chromosome. Microarray plate with multiple wells contains genomic bacterial artificial chromosome or cDNA in the array. The basic steps of aCGH have also been described here.


Fluorescent in situ hybridization technique FISH Troubleshooting of FISH Protocol of FISH Comparative genomic hybridization CGH Multi-coloured FISH Spectral karyotyping Three-dimensional FISH Living cell cytogenetic array-based CGH 


  1. 1.
    Xiao S, Renshaw A, Cibas ES, Hudson TJ, Fletcher JA. Novel fluorescence in situ hybridization approaches in solid tumors. Characterization of frozen specimens, touch preparations, and cytological preparations. Am J Pathol. 1995;147(4):896–904.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(Pt 14):2833–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Nath J, Johnson KL. A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem. 2000;75(2):54–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Desmaze C, Brizard F, Turc-Carel C, Melot T, Delattre O, Thomas G, Aurias A. Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet Cytogenet. 1997;97:12–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Hyytinen E, Visakorpi T, Kallioniemi A, Kallioniemi OP, Isola JJ. Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization. Cytometry. 1994;16(2):93–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Ensinger C, Obrist P, Rogatsch H, Ramoni A, Schäfer G, Mikuz G. Improved technique for investigations on archival formalin-fixed, paraffin-embedded tumors by interphase in-situ hybridisation. Anticancer Res. 1997;17(6D):4633–7.PubMedGoogle Scholar
  7. 7.
    Werner M, Wilkens L, Aubele M, Nolte M, Zitzelsberger H, Komminoth P. Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem Cell Biol. 1997;108(4-5):381–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res. 2002;276(1):10–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Belmont A. Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr Opin Cell Biol. 2003;15:304–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, Ferguson-Smith MA, Schröck E, Ried T. Multicolour spectral karyotyping of mouse chromosomes. Nat Genet. 1996;14(3):312–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Weiss MM, Hermsen MA, Meijer GA, van Grieken NC, Baak JP, Kuipers EJ, van Diest PJ. Comparative genomic hybridisation. Mol Pathol. 1999;52(5):243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    DeVries S, Gray JW, Pinkel D, Waldman FM, Sudar D. Comparative genomic hybridization. Curr Protoc Hum Genet. 2001;Chapter 4:Unit4.6.Google Scholar
  14. 14.
    Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13(10):2291–305.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pranab Dey
    • 1
  1. 1.Education and Research (PGIMER)Post Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations