Polymerase Chain Reaction: Principle, Technique and Applications in Pathology

  • Pranab Dey


Polymerase chain reaction (PCR) is one of the most important techniques in molecular pathology by which the single or the pieces of target DNA are amplified by using a pair of DNA primer, heat-resistant DNA polymerase enzyme and nucleotides. This chapter discusses the principle, steps and application of PCR in pathology. There are four basic steps of PCR: denaturation, annealing and extension. The PCR thermal cycle rapidly heats and cools the PCR reagent mixture. The cycling time depends on (1) size of the DNA template and (2) G-C content of DNA. The number of the thermal cycler is usually set as 25–30 cycles. The PCR products are demonstrated by agarose gel electrophoresis of the product, cloning or sequencing of the products. The chapter also covers the troubleshooting of PCR. There are different types of PCR methods for diagnostic purposes that include reverse transcriptase PCR, asymmetric PCR, hot start PCR, in situ PCR, inverse PCR, single-strand conformation polymorphism, real-time PCR and nested PCR. All these types of PCR have been described in details.


Polymerase chain reaction Taq polymerase Thermal cycle Reverse transcriptase PCR Asymmetric PCR Hot start PCR In situ PCR Inverse PCR Single strand conformation polymorphism Real-time PCR  Nested PCR 


  1. 1.
    O’Leary JJ, Engels K, Dada MA. The polymerase chain reaction in pathology. J Clin Pathol. 1997;50(10):805–10.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Pan LX, Diss TC, Isaacson PG. The polymerase chain reaction in histopathology. Histopathology. 1995;26(3):201–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. 2012;63:e3998.Google Scholar
  4. 4.
    Grunenwald H. Optimization of polymerase chain reactions. Methods Mol Biol. 2003;226:89–100.PubMedGoogle Scholar
  5. 5.
    Tse WT, Forget BG. Reverse transcriptase and direct amplification of cellular RNA transcripts by Taq polymerase. Gene. 1990;88:293–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Gyllensten UB, Erlich HA. Generation of single stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988;85:7652–6.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Paul N, Shum J, Le T. Hot start PCR. Methods Mol Biol. 2010;630:301.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    O’Leary JJ, Chetty R, Graham AK, McGee JO’D. In situ PCR: pathologist’s dream or nightmare? J Pathol. 1996;178:11–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Jong AY, T’ang A, Liu DP, Huang SH. Inverse PCR. Genomic DNA cloning. Methods Mol Biol. 2002;192:301–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989;86:2766–70.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Dong Y, Zhu H. Single-strand conformational polymorphism analysis: basic principles and routine practice. Methods Mol Med. 2005;108:149–57.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA-sequences. Biotechnology. 1992;10(4):413–7.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5(2):209–19.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Greiner TC. Polymerase chain reaction: uses and potential applications in cytology. Diagn Cytopathol. 1992;8(1):61–4.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Bermingham N, Luettich K. Polymerase chain reaction and its applications. Curr Diagn Pathol. 2003;9(3):159–64.CrossRefGoogle Scholar
  16. 16.
    Ronai Z, Yakubovskaya M. PCR in clinical diagnosis. J Clin Lab Anal. 1995;9(4):269–83.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Wan JH, Trainor KJ, Brisco MJ, Morley AA. Monoclonality in B cell lymphoma detected in paraffin wax embedded sections using the polymerase chain reaction. J Clin Pathol. 1990;43:888–90.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Lee MS, Chang KS, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA. Detection of minimal residual cells carrying the T(14:18) by DNA sequence amplification. Science. 1987;237:175–8.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Tutschek B, Sherlock J, Halder A, Delhanty J, Rodeck C, Adinolfi M. Isolation of fetal cells from transcervical samples by micromanipulation: molecular confirmation of their fetal origin and diagnosis of fetal aneuploidy. Prenat Diagn. 1995;15:951–60.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Sun H, Pan Y, He B, Deng Q, Li R, Xu Y, Chen J, Gao T, Ying H, Wang F, Liu X, Wang S. Gene therapy for human colorectal cancer cell lines with recombinant adenovirus 5 based on loss of the insulin-like growth factor 2 imprinting. Int J Oncol. 2015;46(4):1759–67.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pranab Dey
    • 1
  1. 1.Education and Research (PGIMER)Post Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations