Advertisement

Bee Diversity and Current Status of Beekeeping in Thailand

  • Panuwan Chantawannakul
Chapter

Abstract

Traditional honey bee hunting and beekeeping are crucial to the economic and spiritual lives of Thais. Bee products such as honey, brood, and royal jelly are regarded as healthy foods and frequently used as traditional medicine. In this chapter, honey bee diversity in Thailand, traditional hunting, and beekeeping are described. The giant and dwarf honey bees are harvested by hunting, only the Asian cavity nesting honey bee (Apis cerana) is domesticated and maintained in the traditional hives for harvesting honey and other bee products. The introduced species, the European honey bee (Apis mellifera) are kept in the modern box hives. By sharing food sources and habitat, the honey bees have also shared parasites and diseases. The ectoparasitic mites (both Varroa destructor and Tropilaelaps mercedesae) were jumped from A. cerana and A. dorsata respectively to the A. mellifera. The parasitic mites have become widespread and serious cause of colony loss in Thailand. In addition, microbial diseases (e.g., bee viruses, and N. ceranae) also can be detected in both native and introduced honey bee species. Other factors contributing to honey bee declines are also described.

Keywords

Thai Beekeeping Asian honey bees Apis cerana Bee diseases Bee pests 

Notes

Acknowledgement

P.C. acknowledge Thailand research fund (RSA 6080028) and Chiang Mai University fund.

References

  1. Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351.  https://doi.org/10.2307/1939538 CrossRefGoogle Scholar
  2. Akratanakul P (2000) Apiculture development in Thailand. In: Proceedings of the 7th international conference on tropical bees: management and diversity, vol 38. Apidologie, pp 395–398Google Scholar
  3. Anderson DL, Morgan MJ (2007) Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Exp Appl Acarol 43:1–24.  https://doi.org/10.1007/s10493-007-9103-0 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Anderson DL, Trueman JW (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24:165–189CrossRefPubMedGoogle Scholar
  5. Booppha B, Eittsayeam S, Pengpat K, Chantawannakul P (2010) Development of bioactive ceramics to control mite and microbial diseases in bee farms. Adv Mater Res 93:553–557.  https://doi.org/10.4028/www.scientific.net/AMR.93-94.553 CrossRefGoogle Scholar
  6. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416CrossRefGoogle Scholar
  7. Buawangpong N, Khongphinitbunjong K, Chantawannakul P, Burgett M (2013) Tropilaelaps mercedesae: does this honey bee brood mite parasite exhibit a sex preference when infesting brood of the adapted host Apis dorsata? J Apic Res 52:158–159.  https://doi.org/10.3896/IBRA.1.52.3.07 CrossRefGoogle Scholar
  8. Buawangpong N, Saraithong P, Khongphinitbunjong K, Chantawannakul P, Burgett M (2014) The comb structure of Apis dorsata F. (hymenoptera: Apidae): 3-dimensional architecture and resource partitioning. Chiang Mai J Sci 41:1077–1083Google Scholar
  9. Buawangpong N, de Guzman LI, Khongphinitbunjong K, Frake AM, Burgett M, Chantawannakul P (2015) Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies. Apidologie 46:779–786.  https://doi.org/10.1007/s13592-015-0368-8 CrossRefGoogle Scholar
  10. Buchwald R, Breed MD, Greenberg AR, Otis G (2006) Interspecific variation in beeswax as a biological construction material. J Exp Biol 209:3984–3989.  https://doi.org/10.1242/jeb.02472 CrossRefPubMedGoogle Scholar
  11. Budge GE et al (2010) The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera and the efficacy of European foulbrood control measures. J Invertebr Pathol 105:164–170.  https://doi.org/10.1016/j.jip.2010.06.004 CrossRefPubMedGoogle Scholar
  12. Burgett DM, Kitprasert C (1990) Evaluation of Apistan as a control for Tropilaelaps clareae (Acari: Laelapidae), an Asian honey bee brood mite parasite. Am Bee J 130(1):51–53Google Scholar
  13. Camphor ESW, Hashmi AA, Ritter W, Bowen ID (2005) Seasonal changes in mite (Tropilaelaps clareae) and honeybee (Apis mellifera) populations in Apistan treated and untreated colonies. Apiacta 40:34–44Google Scholar
  14. Chaimanee V, Chen Y, Pettis JS, Scott Cornman R, Chantawannakul P (2011) Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand. J Invertebr Pathol 107:229–233.  https://doi.org/10.1016/j.jip.2011.05.012 CrossRefPubMedGoogle Scholar
  15. Chaiyawong T, Deowanish S, Wongsiri S, Sylvester HA, Rinderer TE, de Guzman L (2004) Multivariate morphometric study of Apis florea in Thailand. J Apic Res 43:123–127.  https://doi.org/10.1080/00218839.2004.11101122 CrossRefGoogle Scholar
  16. Chantaphanwattana T (2017) Identification of bee pollens collected from honey bee (Apis mellifera) hives in Chiang Mai University. Dissertation, Chiang Mai UniversityGoogle Scholar
  17. Chantawannakul P, Ward L, Boonham N, Brown M (2006) A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J Invertebr Pathol 91:69–73.  https://doi.org/10.1016/j.jip.2005.11.001 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Chantawannakul P, de Guzman LI, Li J, Williams GR (2016) Parasites, pathogens, and pests of honeybees in Asia. Apidologie 47:301–324.  https://doi.org/10.1007/s13592-015-0407-5 CrossRefGoogle Scholar
  19. Chen YP, Siede R (2007) Honey bee viruses. In: Maramorosch K, Shatkin A (eds) Advances in virus research, vol 70. Elsevier, Amsterdam, pp 33–80.  https://doi.org/10.1016/S0065-3527(07)70002-7 CrossRefGoogle Scholar
  20. Chen PP et al (1998) Honey bees and other edible insects used as human food in Thailand. Am Entomol 44:24–29CrossRefGoogle Scholar
  21. Chen Y, Zhao Y, Hammond J, Hsu HT, Evans J, Feldlaufer M (2004) Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J Invertebr Pathol 87:84–93.  https://doi.org/10.1016/j.jip.2004.07.005 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr, Evans JD, Chen Y (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92:151–155.  https://doi.org/10.1099/vir.0.023853-0 CrossRefPubMedGoogle Scholar
  23. Hepburn HR, Radloff SE (2011) Biogeography of the dwarf honeybees, Apis andreniformis and Apis florea. Apidologie 42:293–300.  https://doi.org/10.1007/s13592-011-0024-x CrossRefGoogle Scholar
  24. Kavinseksan B, Wongsiri S, de Guzman LI et al (2015) Absence of infestation from recent swarms of in Thailand. J Apic Res 42(3):49–50.  https://doi.org/10.1080/00218839.2003.11101091 CrossRefGoogle Scholar
  25. Khacha-ananda S, Tragoolpua K, Chantawannakul P, Tragoolpua Y (2016) Propolis extracts from the northern region of Thailand suppress cancer cell growth through induction of apoptosis pathways. Investig New Drugs 34:707–722.  https://doi.org/10.1007/s10637-016-0392-1 CrossRefGoogle Scholar
  26. Khongphinitbunjong K, de Guzman LI, Burgett MD, Rinderer TE, Chantawannakul P (2012) Behavioral responses underpinning resistance and susceptibility of honeybees to Tropilaelaps mercedesae. Apidologie 43:590–599.  https://doi.org/10.1007/s13592-012-0129-x CrossRefGoogle Scholar
  27. Khongphinitbunjong K, de Guzman LI, Tarver MR, Rinderer TE, Chantawannakul P (2015) Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera. J Apic Res 54:40–47.  https://doi.org/10.1080/00218839.2015.1041311 CrossRefGoogle Scholar
  28. Khongphinitbunjong K, Neumann P, Chantawannakul P, Williams GR (2016) The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apis mellifera, longevity and emergence weight, and promotes deformed wing virus infections. J Invertebr Pathol 137:38–42.  https://doi.org/10.1016/j.jip.2016.04.006 CrossRefPubMedGoogle Scholar
  29. Koeniger N, Koeniger G, De Guzman LI, Lekprayoon C (1993) Survival of Euvarroa sinhai Delfinado and Baker (Acari, Varroidae) on workers of Apis cerana Fabr, Apis florea Fabr and Apis mellifera L in cages. Apidologie 24:403–410CrossRefGoogle Scholar
  30. Kongpitak P, Polgár G, Heine J, Bayer Healthcare AG (2008) The efficacy of Bayvarol® and Check Mite® in the control of Tropilaelaps mercedesae in the European honey bee (Apis mellifera) in Thailand. Apıacta 43:12–16Google Scholar
  31. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci 99:16812–16816.  https://doi.org/10.1073/pnas.262413599 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Lekprayoon C, Tangkanasing P (1991) Euvarroa wongsirii, a new species of bee mite from Thailand. Int J Acarol 17:255–258.  https://doi.org/10.1080/01647959108683915 CrossRefGoogle Scholar
  33. Martin SJ et al (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306.  https://doi.org/10.1126/science.1220941 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mookhploy W, Kimura K, Disayathanoowat T, Yoshiyama M, Hondo K, Chantawannakul P (2015) Capsid gene divergence of black queen cell virus isolates in Thailand and Japan honey bee species. J Econ Entomol 108:1460–1464.  https://doi.org/10.1093/jee/tov102 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Morse RA, Laigo FM (1969) The potential and problems of beekeeping in the Philippines. Bee World 50:9–14.  https://doi.org/10.1080/0005772X.1969.11097235 CrossRefGoogle Scholar
  36. Murray TE, Kuhlmann M, Potts SG (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236CrossRefGoogle Scholar
  37. Page P, Lin Z, Buawangpong N, Zheng H, Hu F, Neumann P, Chantawannakul P, Dietemann V (2016) Social apoptosis in honey bee superorganisms. Sci Rep 6:27210.  https://doi.org/10.1038/srep27210 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Partap U, Partap T (1997) Managed crop pollination: the missing dimension of mountain agricultural productivity. Mountain Farming Systems’ Discussion Paper, MFS 97. ICIMOD, KathmanduGoogle Scholar
  39. Partap U, Partap T (2002) Warning signals from the apple valleys of the Hindu Kush-Himalayas: productivity concerns and pollination problems. ICIMOD, KathmanduGoogle Scholar
  40. Pattamayutanon P, Angeli S, Thakeow P, Abraham J, Disayathanoowat T, Chantawannakul P (2015) Biomedical activity and related volatile compounds of Thai honeys from 3 different honeybee species. J Food Sci 80:M2228–M2240.  https://doi.org/10.1111/1750-3841.12993 CrossRefPubMedGoogle Scholar
  41. Pettis JS, Rose R, Lichtenberg EM, Chantawannakul P, Buawangpong N, Somana W, Sukumalanand P, Vanengelsdorp D (2013) A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laelapidae) detection. J Econ Entomol 106:1535–1544CrossRefPubMedGoogle Scholar
  42. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353.  https://doi.org/10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  43. Pramual C (1994) DNA analysis of genetic diversity of Apis cerana Fabricius in Thailand. Dissertation, Chulalongkorn University, BangkokGoogle Scholar
  44. Rattanawannee A, Chanchao C, Wongsiri S (2007) Morphometric and genetic variation of small dwarf honeybees Apis andreniformis Smith, 1858 in Thailand. Insect Sci 14:451–460.  https://doi.org/10.1111/j.1744-7917.2007.00173.x CrossRefGoogle Scholar
  45. Rattanawannee A, Chanchao C, Lim J, Wongsiri S, Oldroyd BP (2013) Genetic structure of a giant honey bee (Apis dorsata) population in northern Thailand: implications for conservation. Insect Conserv Divers 6:38–44.  https://doi.org/10.1111/j.1752-4598.2012.00193.x CrossRefGoogle Scholar
  46. Ricketts TH, Regetz J, Steffan-Dewenter I et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515.  https://doi.org/10.1111/j.1461-0248.2008.01157.x CrossRefPubMedGoogle Scholar
  47. Rinderer TE, Oldroyd BP, De Guzman LI, Wattanachaiyingchareon W, Wongsiri S (2002) Spatial distribution of the dwarf honey bees in an agroecosystem in southeastern Thailand. Apidologie 33(6):539–543CrossRefGoogle Scholar
  48. Sanpa S, Chantawannakul P (2009) Survey of six bee viruses using RT-PCR in Northern Thailand. J Invertebr Pathol 100:116–119.  https://doi.org/10.1016/j.jip.2008.11.010 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Sanpa S, Popova M, Bankova V, Tunkasiri T, Eitssayeam S, Chantawannakul P (2015) Antibacterial compounds from propolis of Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS One 10:e0126886.  https://doi.org/10.1371/journal.pone.0126886 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Sanpa S, Popova M, Tunkasiri T, Eitssayeam S, Bankova V, Chantawannakul P (2017) Chemical profiles and antimicrobial activities of Thai propolis collected from Apis mellifera. Chiang Mai J Sci 44:438–448Google Scholar
  51. Saraithong P, Burgett M, Khongphinitbunjong K, Chantawannakul P (2012) Apis dorsata F: diurnal foraging patterns of worker bees in northern Thailand. J Apic Res 51:362–364.  https://doi.org/10.3896/IBRA.1.51.4.12 CrossRefGoogle Scholar
  52. Saraithong P, Li Y, Saenphet K, Chen Z, Chantawannakul P (2014) Bacterial community structure in Apis florea larvae analyzed by denaturing gradient gel electrophoresis and 16S rRNA gene sequencing. Insect Sci 22:606–618.  https://doi.org/10.1111/1744-7917.12155 CrossRefPubMedGoogle Scholar
  53. Seeley TD, Seeley RH, Akratanakul P (1982) Colony defense strategies of the honeybees in Thailand. Ecol Monogr 52:43–63.  https://doi.org/10.2307/2937344 CrossRefGoogle Scholar
  54. Sinpoo C, Williams GR, Chantawannakul P (2017) Dynamics of fungal communities in corbicular pollen and bee bread. Chiang Mai J Sci 44(4):1244–1256Google Scholar
  55. Suntiparapop K, Prapaipong P, Chantawannakul P (2012) Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J Apic Res 51(1):45–45CrossRefGoogle Scholar
  56. Suwannapong G, Maksong S, Yemor T, Junsuri N, Benbow ME (2013) Three species of native Thai honey bees exploit overlapping pollen resources: identification of bee flora from pollen loads and midguts from Apis cerana, A. dorsata and A. florea. J Apic Res 52:196–201.  https://doi.org/10.3896/IBRA.1.52.5.05 CrossRefGoogle Scholar
  57. Sylvester HA, Limbipichai K, Wongsiri S, Rinderer TE, Mardan M (1998) Morphometric studies of Apis cerana in Thailand and the Malaysian peninsula. J Apic Res 37(3):137–145.  https://doi.org/10.1080/00218839.1998.11100965 CrossRefGoogle Scholar
  58. Tangjingjai W, Verakalasa P, Sittipraneed S, Klinbunga S, Lekprayoon C (2003) Genetic differences between Tropilaelaps clareae and Tropilaelaps koenigerum in Thailand based on ITS and RAPD analyses. Apidologie 34:513–524.  https://doi.org/10.1051/apido:2003042 CrossRefGoogle Scholar
  59. Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F, Colin ME, Bergoin M (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191.  https://doi.org/10.1128/AEM.70.12.7185-7191.2004 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Thapa R, Wongsiri S (1997) Eupatorium odoratum: a honey plant for beekeepers in Thailand. Bee World 78:175–178.  https://doi.org/10.1080/0005772X.1997.11099362 CrossRefGoogle Scholar
  61. Theantana T, Chantawannakul P (2008) Protease and β-N-acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis. J Apic Res 47:68–76.  https://doi.org/10.1080/00218839.2008.11101426 CrossRefGoogle Scholar
  62. Wanjai C, Sringarm K, Santasup C, Pak-Uthai S, Chantawannakul P (2012) Physicochemical and microbiological properties of longan, bitter bush, sunflower and litchi honeys produced by Apis mellifera in Northern Thailand. J Apic Res 51:36–44.  https://doi.org/10.3896/IBRA.1.51.1.05 CrossRefGoogle Scholar
  63. Warrit N, Smith DR, Lekprayoon C (2006) Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37(1):19–30CrossRefGoogle Scholar
  64. Wattanachaiyingcharoen W, Oldroyd BP, Good G, Halling L, Ratnieks FLW, Wongsiri S (2002) Lack of worker reproduction in the giant honey bee Apis dorsata Fabricius. Insect Soc 49:80–85.  https://doi.org/10.1007/s00040-002-8283-1 CrossRefGoogle Scholar
  65. Wongsiri S (1989) The effects of the import of Apis mellifera L. to Thailand. In: Proceedings of the 4th international conference apicultural tropical climates, Cairo, 1989. International Bee Research Association, Cairo, London, pp 162–167Google Scholar
  66. Wongsiri S, Tangkanasing P, Sylvester HA (1987) Mites, pests and beekeeping with Apis cerana and Apis melifera in Thailand. Am Bee J 127:500–503Google Scholar
  67. Wongsiri S, Chen PP, Thapa R (1995) Other uses for bee products in Thailand. Br Bee J 123:144–149Google Scholar
  68. Wongsiri S, Thapa T, Oldroyd B, Burgett DM (1996) A magic bee tree: home to Apis dorsata. Am Bee J 136:796–799Google Scholar
  69. Wongsiri S, Chanchao C, Deowanish S, Aemprapa S, Chaiyawong T, Petersen S, Leepitakrat S (2000) Honey bee diversity and beekeeping in Thailand. Bee World 81:20–29.  https://doi.org/10.1080/0005772X.2000.11099464 CrossRefGoogle Scholar
  70. Wongsiri S, Thapa R, Sharma D, Bali K (2014) Bee-birds: ravagers of beekeepers, but saver of farmers. In: Gupta RK, Reybroeck W, van Veen JW, Gupta A (eds) Beekeeping for poverty alleviation and livelihood security. Springer, Netherlands, pp 355–378.  https://doi.org/10.1007/978-94-017-9199-1_13 CrossRefGoogle Scholar
  71. Yañez O, Gauthier L, Chantawannakul P, Neumann P (2016) Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol Lett 363:1–7.  https://doi.org/10.1093/femsle/fnw147 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Panuwan Chantawannakul
    • 1
    • 2
    • 3
  1. 1.Bee Protection Laboratory, Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.International College of Digital InnovationChiang Mai UniversityChiang MaiThailand
  3. 3.Environmental Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations