Advertisement

Functional Nucleic Acid Based Biosensors for Other Metal Ion Detection

  • Yunbo Luo
Chapter

Abstract

This chapter mainly introduces the functional nucleic acid detection methods of 12 other metal ions in addition to the previous three chapters. Functional nucleic acid as a detection element is mainly used to construct various functional nucleic acid biosensors. These 12 ions mainly include some active metals of the first and second main groups and three kinds of transition metals (Fe2+, Fe3+, Ni2+, Mn2+) as well as lanthanide ions and uranyl ions. Among them, there are many methods for detecting functional nucleic acids of potassium ions.

Keywords

Functional nucleic acids Transition metals Ion detection Biosensor 

References

  1. 1.
    S.F. Torabi, P. Wu, C.E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu, In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc. Natl. Acad. Sci. 112(19), 5903–5908 (2015)CrossRefGoogle Scholar
  2. 2.
    W. Zhou, J. Ding, J. Liu, A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing. Nucleic Acids Res. 44(21), 10377–10385 (2016)Google Scholar
  3. 3.
    W. Zhou, R. Saran, Q. Chen, A new Na(+)-Dependent RNA-Cleaving DNAzyme with over 1000-fold rate acceleration by Ethanol. Chembiochem. 17(2), 159–163 (2016)CrossRefPubMedGoogle Scholar
  4. 4.
    H. Sun, H. Chen, X. Zhang, Y. Liu, A. Guan, Q. Li, Q. Yang, Y. Shi, S. Xu, Y. Tang, Colorimetric detection of sodium ion in serum based on the G-quadruplex conformation related DNAzyme activity. Anal. Chim. Acta. 912, 133–138 (2016)CrossRefPubMedGoogle Scholar
  5. 5.
    C.C. Huang, H.T. Chang, Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem. Commun. 12, 1461–1463 (2008)Google Scholar
  6. 6.
    H. Qin, J. Ren, J. Wang, N.W. Luedtke, E. Wang, G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions. Anal. Chem. 82(19), 8356–8360 (2010)CrossRefPubMedGoogle Scholar
  7. 7.
    H. Ueyama, M. Takagi, S. Takenaka, A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet− potassium ion complex formation. J. Am. Chem. Soc. 124(48), 14286–14287 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    X. Fan, H. Li, J. Zhao, F. Lin, L. Zhang, Y. Zhang, S. Yao, A novel label-free fluorescent sensor for the detection of potassium ion based on DNAzyme. Talanta. 89, 57–62 (2012)CrossRefPubMedGoogle Scholar
  9. 9.
    A.E. Radi, C.K. O’Sullivan, Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem. Commun. 32, 3432–3434 (2006)Google Scholar
  10. 10.
    L. Yang, Z. Qing, C. Liu, Q. Tang, J. Li, S. Yang, J. Zheng, R. Yang, W. Tan, Direct fluorescent detection of blood potassium by ion-selective formation of intermolecular G-Quadruplex and ligand binding. Anal. Chem. 88(18), 9285–9292 (2016)CrossRefPubMedGoogle Scholar
  11. 11.
    L. Liu, Y. Shao, J. Peng, C. Huang, H. Liu, L. Zhang, Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor. Anal. Chem. 86(3), 1622–1631 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    T. Li, E. Wang, S. Dong, Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal. Chem. 82(18), 7576–7580 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    Z.S. Wu, C.R. Chen, G.L. Shen, R.Q. Yu, Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. Biomaterials 29(17), 2689–2696 (2008)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Zhang, R. Zhang, B. Ma, J. Qiu, J. Li, Y. Sang, W. Liu, H. Liu, Specific detection of potassium ion in serum by a modified G-quadruplex method. RSC Adv. 6(48), 41999–42007 (2016)CrossRefGoogle Scholar
  15. 15.
    C.R. Hampton, H.C. Bowen, M.R. Broadley, J.P. Hammond, A. Mead, K.A. Payne, J. Pritchard, P.J. White, Cesium toxicity in Arabidopsis. Plant Physiol. 136(3), 3824–3837 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    J.C. Chaput, C. Switzer, A DNA pentaplex incorporating nucleobase quintets. Proc. Natl. Acad. Sci. 96(19), 10614–10619 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    S. Lin, C. Yang, Z. Mao, B. He, Y.T. Wang, C.H. Leung, D.L. Ma, A G-pentaplex-based assay for Cs+ ions in aqueous solution using a luminescent Ir (III) complex. Biosens. Bioelectron. 77, 609–612 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    A.R. Feldman, D. Sen, A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J. Mol. Biol. 313(2), 283–294 (2001)CrossRefPubMedGoogle Scholar
  19. 19.
    W. Zhou, R. Saran, P.J.J. Huang, J. Ding, J. Liu, An exceptionally selective DNA cooperatively binding two Ca2+ ions. Chembiochem 18(6), 518–522 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Zhou, Y. Zhang, J. Ding, J. Liu, In vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2+. ACS Sens. 1(5), 600–606 (2016)Google Scholar
  21. 21.
    A. Peracchi, Preferential activation of the 8-17 deoxyribozyme by Ca2+ ions evidence for the identity of 8 to 17 with the catalytic domain of the MG5 deoxyribozyme. J. Biol. Chem. 275(16), 11693–11697 (2000)CrossRefPubMedGoogle Scholar
  22. 22.
    P.-J.J. Huang, M. Vazin, Ż. Matuszek, J. Liu, A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acids Res. 43(1), 461–469 (2015)CrossRefPubMedGoogle Scholar
  23. 23.
    P.J.J. Huang, J. Lin, J. Cao, M. Vazin, J. Liu, Ultrasensitive DNAzyme beacon for lanthanides and metal speciation. Anal. Chem. 86(3), 1816–1821 (2014)CrossRefPubMedGoogle Scholar
  24. 24.
    R. Nishiyabu, N. Hashimoto, T. Cho, K. Watanabe, T. Yasunaga, A. Endo, K. Kaneko, T. Niidome, M. Murata, C. Adachi, Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc. 131(6), 2151–2158 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    V. Dokukin, S.K. Silverman, Lanthanide ions as required cofactors for DNA catalysts. Chem. Sci. 3(5), 1707–1714 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    P.J.J. Huang, M. Vazin, J. Liu, In vitro selection of a new lanthanide-dependent DNAzyme for ratiometric sensing lanthanides. Anal. Chem. 86(19), 9993–9999 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    P. Zhou, B. Gu, Extraction of oxidized and reduced forms of uranium from contaminated soils: Effects of carbonate concentration and pH. Environ. Sci. Technol. 39(12), 4435–4440 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    J. Liu, A.K. Brown, Meng X. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. U S A. 104(7), 2056–2061 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    S. Basu, A.A. Szewczak, M. Cocco, S.A. Strobel, Direct detection of monovalent metal ion binding to a DNA G-quartet by 205Tl NMR. J. Am. Chem. Soc. 122(13), 3240–3241 (2000)CrossRefGoogle Scholar
  30. 30.
    M. Hoang, P.J.J. Huang, J. Liu, G-quadruplex DNA for fluorescent and colorimetric detection of thallium (I). ACS Sens. 1(2), 137–143 (2015)CrossRefGoogle Scholar
  31. 31.
    P.J.J. Huang, M. Vazin, J. Liu, Desulfurization activated phosphorothioate DNAzyme for the detection of thallium. Anal. Chem. 87(20), 10443–10449 (2015)CrossRefPubMedGoogle Scholar
  32. 32.
    M. Zhang, Y.Q. Liu, B.C. Ye, Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum (III) on living cellular surfaces. Chem Eur J 18(9), 2507–2513 (2012)CrossRefPubMedGoogle Scholar
  33. 33.
    Z. Liu, S.H. Mei, J.D. Brennan, Y. Li, Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J. Am. Chem. Soc. 125(25), 7539–7545 (2003)CrossRefPubMedGoogle Scholar
  34. 34.
    W. Zhou, R. Saran, J. Liu, Metal Sensing by DNA. Chem. Rev. 117(12), 8272 (2017)CrossRefPubMedGoogle Scholar
  35. 35.
    Y. Shi, G. Zhao, W. Kong, Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in salmonella. J. Biol. Chem. 289(16), 11353–11366 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    M. Dambach, M. Sandoval, T.B. Updegrove, V. Anantharaman, L. Aravind, L.S. Waters, G. Storz, The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol. Cell 57(6), 1099–1109 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    P. Aich, S.L. Labiuk, L.W. Tari, L.J. Delbaere, W.J. Roesler, K.J. Falk, R.P. Steer, J.S. Lee, M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire. J. Mol. Biol. 294(2), 477–485 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    H.P. Hofmann, S. Limmer, V. Hornung, M. Sprinzl, Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a GA base pair. RNA 3(11), 1289–1300 (1997)Google Scholar
  39. 39.
    L. Lanceta, J.M. Mattingly, C. Li, J.W. Eaton, How heme oxygenase-1 prevents heme-induced cell death. PLoS One 10(8), e0134144 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    M.W. Hentze, L.C. Kühn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. U S A. 93(16), 8175–8182 (1996)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science &Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations