Advertisement

Functional Nucleic Acid Based Biosensors for Transition Metal Ion Detection

  • Yunbo Luo
Chapter

Abstract

Transition metals account for a large portion of chemical elements in periodic table and are crucial for analysis. As important microelements, the content of zinc ion, copper ion and chromium ion is the key for human health, otherwise excess intake will do harm for metabolism. However, poisonous transition metal ions, such as mercury ion and cadmium ion, were paid much attention for their high toxicity even in low content. In this chapter, detection methods based on functional nucleic acids (FNAs) for five representative transition metal ions composed of zinc ion, copper ion, mercury ion, cadmium ion and chromium ion were summarized.

Keywords

Functional nucleic acids Zinc ion Copper ion Mercury ion Cadmium ion Chromium ion 

References

  1. 1.
    M. Wastney, R. Aamodt, W. Rumble, R. Henkin, Kinetic analysis of zinc metabolism and its regulation in normal humans. Am. J. Phys. Regul. Integr. Comp. Phys. 251(2), R398–R408 (1986)Google Scholar
  2. 2.
    H. Liu Sheng, Y. Xiao Shan, W. De Chang, Age-dependent variation of zinc-65 metabolism in LACA mice. Int. J. Radiat. Biol. 60(6), 907–916 (1991)Google Scholar
  3. 3.
    C. Andreini, L. Banci, I. Bertini, A. Rosato, Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5(1), 196–201 (2006)CrossRefGoogle Scholar
  4. 4.
    L.M. Plum, L. Rink, H. Haase, The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health 7(4), 1342–1365 (2010)CrossRefGoogle Scholar
  5. 5.
    W. Maret, Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr.: Int. Rev. J. 4(1), 82–91 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Dardenne, Zinc and immune function. Eur. J. Clin. Nutr. 56(S3), S20 (2002)CrossRefGoogle Scholar
  7. 7.
    S.L. Sensi, P. Paoletti, A.I. Bush, I. Sekler, Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780 (2009)CrossRefGoogle Scholar
  8. 8.
    R.S. MacDonald, The role of zinc in growth and cell proliferation. J. Nutr. 130(5), 1500S–1508S (2000)CrossRefGoogle Scholar
  9. 9.
    G.J. Fosmire, Zinc toxicity. Am. J. Clin. Nutr. 51(2), 225–227 (1990)CrossRefGoogle Scholar
  10. 10.
    J. Ciesiolka, J. Gorski, M. Yarus, Selection of an RNA domain that binds Zn2+. RNA 1(5), 538–550 (1995)Google Scholar
  11. 11.
    J. Ciesiolka, M. Yarus, Small RNA-divalent domains. RNA 2(8), 785–793 (1996)PubMedPubMedCentralGoogle Scholar
  12. 12.
    S.W. Santoro, G.F. Joyce, K. Sakthivel, S. Gramatikova, C.F. Barbas, RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122(11), 2433–2439 (2000)CrossRefGoogle Scholar
  13. 13.
    Y. Xiao, E.C. Allen, S.K. Silverman, Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior. Chem. Commun. 47(6), 1749–1751 (2011)Google Scholar
  14. 14.
    H. Gu, K. Furukawa, Z. Weinberg, D.F. Berenson, R.R. Breaker, Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135(24), 9121–9129 (2013)CrossRefGoogle Scholar
  15. 15.
    R.R. Breaker, G.F. Joyce, A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2(10), 655–660 (1995)Google Scholar
  16. 16.
    J. Li, W. Zheng, A.H. Kwon, Y. Lu, In vitro selection and characterization of a highly efficient Zn (II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28(2), 481–488 (2000)Google Scholar
  17. 17.
    B. Cuenoud, J.W. Szostak, A DNA metalloenzyme with DNA ligase activity. Nature. 375(6532), 611 (1995)CrossRefGoogle Scholar
  18. 18.
    K.E. Nelson, P.J. Bruesehoff, Y. Lu, In vitro selection of high temperature Zn2+-dependent DNAzymes. J. Mol. Evol. 61(2), 216–225 (2005)Google Scholar
  19. 19.
    W.E. Purtha, R.L. Coppins, M.K. Smalley, S.K. Silverman, General Deoxyribozyme-catalyzed synthesis of native 3’−5’ RNA linkages. J. Am. Chem. Soc. 127(38), 13124–13125 (2005)Google Scholar
  20. 20.
    K.A. Hoadley, W.E. Purtha, A.C. Wolf, A. Flynn-Charlebois, S.K. Silverman, Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry 44(25), 9217–9231 (2005)Google Scholar
  21. 21.
    M. Chandra, A. Sachdeva, S.K. Silverman, DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 5(10), 718–720 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Xiao, R.J. Wehrmann, N.A. Ibrahim, S.K. Silverman, Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA. Nucleic Acids Res. 40(4), 1778–1786 (2011)CrossRefGoogle Scholar
  23. 23.
    T.E. Velez, J. Singh, Y. Xiao, E.C. Allen, O.Y. Wong, M. Chandra, S.C. Kwon, S.K. Silverman, Systematic evaluation of the dependence of deoxyribozyme catalysis on random region length. ACS Comb. Sci. 14(12), 680–687 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Ma, B. Liu, P.J.J. Huang, X. Zhang, J. Liu, DNA adsorption by ZnO nanoparticles near its solubility limit: implications for DNA fluorescence quenching and DNAzyme activity assays. Langmuir 32(22), 5672–5680 (2016)Google Scholar
  25. 25.
    Y. Xiao, M. Chandra, S.K. Silverman, Functional compromises among pH tolerance, site specificity, and sequence tolerance for a DNA-hydrolyzing deoxyribozyme. Biochemistry. 49(44), 9630–9637 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Wei, Q. Tang, C. Li, Structural transition from the random coil to quadruplex of AG 3 (T 2 AG 3) 3 induced by Zn2+. Biophys. Chem. 132(2), 110–113 (2008)Google Scholar
  27. 27.
    Y. Guo, Y. Sun, X. Shen, X. Chen, W. Yao, Y. Xie, J. Hu, R. Pei, Quantification of Zn (II) using a label-free sensor based on graphene oxide and G-quadruplex. Anal. Methods 7(22), 9615–9618 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Guo, Y. Sun, X. Shen, K. Zhang, J. Hu, R. Pei, Label-free detection of Zn2+ based on G-quadruplex. Anal. Sci. 31(10), 1041–1045 (2015)Google Scholar
  29. 29.
    L. Li, J. Feng, Y. Fan, B. Tang, Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Anal. Chem. 87(9), 4829–4835 (2015)Google Scholar
  30. 30.
    N. Liu, R. Hou, P. Gao, X. Lou, F. Xia, Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141(12), 3626–3629 (2016)Google Scholar
  31. 31.
    L. Magerusan, C. Socaci, M. Coros, F. Pogacean, M.C. Rosu, S. Gergely, S. Pruneanu, C. Leostean, I.O. Pana, Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology. 28(11), 114001 (2017)Google Scholar
  32. 32.
    J. Wang, B. Liu, Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr green I. Chem. Commun. 39, 4759–4761 (2008)Google Scholar
  33. 33.
    Z. Zhang, J. Yin, Z. Wu, R. Yu, Electrocatalytic assay of mercury (II) ions using a bifunctional oligonucleotide signal probe. Anal. Chim. Acta 762, 47–53 (2013)CrossRefGoogle Scholar
  34. 34.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  35. 35.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. Acs. nano. 4(8), 4806–4814 (2010)Google Scholar
  36. 36.
    J. Lee, J. Kim, S. Kim, D.-H. Min, Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105, 275–287 (2016)CrossRefGoogle Scholar
  37. 37.
    C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. 121(26), 4879–4881 (2009)CrossRefGoogle Scholar
  38. 38.
    S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20(3), 453–459 (2010)CrossRefGoogle Scholar
  39. 39.
    H. Dong, W. Gao, F. Yan, H. Ji, H. Ju, Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82(13), 5511–5517 (2010)CrossRefGoogle Scholar
  40. 40.
    R.A. Festa, J.D. Thiele, Copper: an essential metal in biology. Curr. Biol. Cb. 21(21), 877–883 (2011)CrossRefGoogle Scholar
  41. 41.
    K.J. Barnham, A.I. Bush, Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol. 12(2), 222 (2008)CrossRefGoogle Scholar
  42. 42.
    M. Mihai, I. Bunia, F. Doroftei, C.D. Varganici, B.C. Simionescu, Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers. Chem. Eur. J. 21(13), 5220–5230 (2015)CrossRefGoogle Scholar
  43. 43.
    B. Cuenoud, J.W. Szostak, A DNA metalloenzyme with DNA ligase activity. Nature 375(6532), 611–614 (1995)CrossRefGoogle Scholar
  44. 44.
    N. Carmi, L.A. Shultz, R.R. Breaker, In vitro selection of self-cleaving DNAs. Chem. Biol. 3(12), 1039–1046 (1996)CrossRefGoogle Scholar
  45. 45.
    N. Carmi, S.R. Balkhi, R.R. Breaker, Cleaving DNA with DNA. Proc. Natl. Acad. Sci. U. S. A. 95(5), 2233 (1998)CrossRefGoogle Scholar
  46. 46.
    P.J. Huang, J. Liu, An ultrasensitive light-up Cu2+ biosensor using a new DNAzyme cleaving a Phosphorothioate modified substrate. Anal. Chem. 88(6), 3341 (2016)Google Scholar
  47. 47.
    H. Qu, A.T. Csordas, J. Wang, S.S. Oh, M.S. Eisenstein, H.T. Soh, Rapid and label-free strategy to isolate aptamers for metal ions. ACS Nano 10(8), 7558 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Gao, G. Berden, M.T. Rodgers, J. Oomens, Interaction of Cu+ with cytosine and formation of I-motif-like C-M+-C complexes: alkali versus coinage metals. Phys. Chem. Chem. Phys. Pccp. 18(10), 7269 (2016)Google Scholar
  49. 49.
    C. Ge, Q. Luo, D. Wang, S. Zhao, X. Liang, L. Yu, X. Xing, L. Zeng, Colorimetric detection of copper(II) ion using click chemistry and hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme. Anal. Chem. 86(13), 6387 (2014)CrossRefGoogle Scholar
  50. 50.
    L. Zhang, J. Zhu, J. Ai, Z. Zhou, X. Jia, E. Wang, Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens. Bioelectron. 39(1), 268–273 (2013)CrossRefGoogle Scholar
  51. 51.
    W. Li, X. Zhao, J. Zhang, Y. Fu, Cu(II)-coordinated GpG-duplex DNA as peroxidase mimetics and its application for label-free detection of Cu2+ ions. Biosens. Bioelectron. 60(6), 252 (2014)Google Scholar
  52. 52.
    C. Wang, Y. Li, G. Jia, Y. Liu, S. Lu, C. Li, Enantioselective Friedel-crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme. ChemInform 43(43), 6232–6234 (2012)Google Scholar
  53. 53.
    A.T. Phan, V. Kuryavyi, D.J. Patel, DNA architecture: from G to Z. Curr. Opin. Struct. Biol. 16(3), 288–298 (2006)CrossRefGoogle Scholar
  54. 54.
    Y. Zhou, S. Wang, K. Zhang, D.X. Jiang, Visual detection of copper(II) by Azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. 47(39), 7454–7456 (2008)Google Scholar
  55. 55.
    X. Xu, W.L. Daniel, W. Wei, C.A. Mirkin, Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6(5), 623 (2010)Google Scholar
  56. 56.
    Y. Guo, Z. Wang, W. Qu, H. Shao, X. Jiang, Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron. 26(10), 4064–4069 (2011)CrossRefGoogle Scholar
  57. 57.
    Z. Fang, J. Huang, P. Lie, Z. Xiao, C. Ouyang, Q. Wu, Y. Wu, G. Liu, L. Zeng, Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem. Commun. 46(47), 9043–9045 (2010)Google Scholar
  58. 58.
    D. Wang, C. Ge, L. Wang, X. Xing, L. Zeng, A simple lateral flow biosensor for the rapid detection of copper(II) ions based on click chemistry. RSC Adv. 5(92), 75722–75727 (2015)CrossRefGoogle Scholar
  59. 59.
    H. Lin, Y. Zou, Y. Huang, J. Chen, W.Y. Zhang, Z. Zhuang, G. Jenkins, C.J. Yang, DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chem. Commun. 47(33), 9312 (2011)CrossRefGoogle Scholar
  60. 60.
    Z. Qing, Z. Mao, T. Qing, X. He, Z. Zou, D. He, H. Shi, J. Huang, J. Liu, K. Wang, Visual and portable strategy for copper(II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel. Anal. Chem. 86(22), 11263–11268 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Liu, H. Zhao, S. Chen, H. Yu, Y. Zhang, X. Quan, A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens. Bioelectron. 26(10), 4111–4116 (2011)CrossRefGoogle Scholar
  62. 62.
    Z. Qing, L. Zhu, S. Yang, Z. Cao, X. He, K. Wang, R. Yang, In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening. Biosens. Bioelectron. 78, 471 (2016)Google Scholar
  63. 63.
    S.M. Jia, X.F. Liu, P. Li, D.M. Kong, H.X. Shen, G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+-mediated oligonucleotide switching. Biosens. Bioelectron. 27(1), 148–152 (2011)Google Scholar
  64. 64.
    T. Li, S.J. Dong, E.K. Wang, Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem. 81(6), 2144 (2009)Google Scholar
  65. 65.
    L. Tao, B. Li, E. Wang, S. Dong, G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Commun. 24(24), 3551–3553 (2009)Google Scholar
  66. 66.
    Y. Hao, Q. Guo, H. Wu, L. Guo, L. Zhong, J. Wang, T. Lin, F. Fu, G. Chen, Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens. Bioelectron. 52(4), 261 (2014)CrossRefGoogle Scholar
  67. 67.
    C.W. Liu, Y.T. Hsieh, C.C. Huang, Z.H. Lin, H.T. Chang, Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 19(19), 2242–2244 (2008)Google Scholar
  68. 68.
    J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. 119(22), 4171–4174 (2007)Google Scholar
  69. 69.
    X. Xue, F. Wang, X. Liu, One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130(11), 3244–3245 (2008)Google Scholar
  70. 70.
    C.K. Chiang, C.C. Huang, C.W. Liu, H.T. Chang, Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Anal. Chem. 80(10), 3716 (2008)CrossRefGoogle Scholar
  71. 71.
    H. Xu, X. Zhu, H. Ye, L. Yu, X. Liu, G. Chen, A simple “molecular beacon”-based fluorescent sensing strategy for sensitive and selective detection of mercury (II). Chem. Commun. 47(44), 12158 (2011)CrossRefGoogle Scholar
  72. 72.
    Z. Wang, J.H. Lee, Y. Lu, Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun. 45(45), 6005 (2008)Google Scholar
  73. 73.
    J. Wang, B. Liu, Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr green I. Chem. Commun. 23(39), 4759 (2008)Google Scholar
  74. 74.
    H. Li, J. Zhai, J. Tian, Y. Luo, X. Sun, Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 26(12), 4656 (2011)CrossRefGoogle Scholar
  75. 75.
    M. Li, X. Zhou, W. Ding, S. Guo, N. Wu, Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens. Bioelectron. 41(1), 889–893 (2013)CrossRefGoogle Scholar
  76. 76.
    L. Zhang, T. Li, B. Li, J. Li, E. Wang, Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem. Commun. 46(9), 1476 (2010)CrossRefGoogle Scholar
  77. 77.
    Y. Zhang, G.M. Zeng, L. Tang, J. Chen, Y. Zhu, X.X. He, Y. He, Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection. Anal. Chem. 87(2), 989 (2015)CrossRefGoogle Scholar
  78. 78.
    Y. Yuan, M. Gao, G. Liu, Y. Chai, S. Wei, R. Yuan, Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Anal. Chim. Acta. 811, 23–28 (2014)CrossRefGoogle Scholar
  79. 79.
    J. Liu, L. Chen, J. Chen, C. Ge, Z. Fang, L. Wang, X. Xing, L. Zeng, An autonomous T-rich DNA machine based lateral flow biosensor for amplified visual detection of mercury ions. Anal. Methods. 6(7), 2024–2027 (2014)CrossRefGoogle Scholar
  80. 80.
    N. Cheng, Y. Xu, K. Huang, Y. Chen, Z. Yang, Y. Luo, W. Xu, One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water. Food Chem. 214, 169–175 (2017)Google Scholar
  81. 81.
    N. Dave, M.Y. Chan, P.J. Huang, B.D. Smith, J. Liu, Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc. 132(36), 12668 (2010)CrossRefGoogle Scholar
  82. 82.
    Y. Helwa, N. Dave, R. Froidevaux, A. Samadi, J. Liu, Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl. Mater. Interfaces. 4(4), 2228–2233 (2012)CrossRefGoogle Scholar
  83. 83.
    A. Kasprowicz, K. Stokowa-Sołtys, J. Wrzesiński, M. Jeżowska-Bojczuk, J. Ciesiołka, In vitro selection of deoxyribozymes active with Cd2+ ions resulting in variants of DNAzyme 8–17. Dalton Trans. 44(17), 8138–8149 (2015)Google Scholar
  84. 84.
    P.J.J. Huang, J. Liu, Rational evolution of Cd2+-specific DNAzymes with phosphorothioate modified cleavage junction and Cd2+ sensing. Nucleic Acids Res. 43(12), 6125–6133 (2015)Google Scholar
  85. 85.
    Y. Wu, S. Zhan, L. Wang, P. Zhou, Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139(6), 1550–1561 (2014)CrossRefGoogle Scholar
  86. 86.
    H. Wang, H. Cheng, J. Wang, L. Xu, H. Chen, R. Pei, Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd (II). Talanta. 154, 498–503 (2016)CrossRefGoogle Scholar
  87. 87.
    Y.F. Zhu, Y.S. Wang, B. Zhou, J.H. Yu, L.L. Peng, Y.Q. Huang, X.J. Li, S.H. Chen, X. Tang, X.F. Wang, A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium (II). Anal. Bioanal. Chem. 409(21), 4951–4958 (2017)Google Scholar
  88. 88.
    M.N.V. Prasad, Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley. (2008)Google Scholar
  89. 89.
    R. McRae, P. Bagchi, S. Sumalekshmy, C.J. Fahrni, In situ imaging of metals in cells and tissues. Chem. Rev. 109(10), 4780–4827 (2009)Google Scholar
  90. 90.
    H.G. Seiler, H. Sigel, A. Sigel, Handbook on toxicity of inorganic compounds. (1988)Google Scholar
  91. 91.
    E.R. Plunkett, Handbook of industrial toxicology. (1976)Google Scholar
  92. 92.
    W. Zhou, M. Vazin, T. Yu, J. Ding, J. Liu, In vitro selection of chromium-dependent DNAzymes for sensing chromium (III) and chromium (VI). Chem.-A Eur. J. 22(28), 9835–9840 (2016)CrossRefGoogle Scholar
  93. 93.
    W. Zhou, T. Yu, M. Vazin, J. Ding, J. Liu, Cr3+ binding to DNA backbone phosphate and bases: slow ligand exchange rates and metal hydrolysis. Inorg. Chem. 55(16), 8193–8200 (2016)Google Scholar
  94. 94.
    W. Li, Z. Zhang, W. Zhou, J. Liu, Kinetic discrimination of metal ions using DNA for highly sensitive and selective Cr3+ detection. ACS Sensor. 2(5) (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations