Advertisement

Functional Nucleic Acid Based Biosensors for Post-transition Metal Ion Detection

  • Yunbo Luo
Chapter

Abstract

In the periodic table, some metal ions located after the transition metals are called post-transition metals, including lead, thallium, indium, gallium, tin, and bismuth. Although most of the post-transition metals have strong toxicity, but the research about their interactions with DNA are less reported except for lead. At the same time, lead is more potentially harmful because it is widely presence in water, food, paints, dust, and leaded gasoline, which are common in human activity. Therefore, in this part, we chose the lead as example and introduced current progress of functional nucleic acids (FNAs) based lead biosensor, including colorimetric biosensors, fluorescent biosensors, quantum dot biosensor, electrochemical biosensors and graphene oxide-based biosensor.

Keywords

Functional nucleic acids Lead ion detection Biosensor Nanocomposites 

References

  1. 1.
    T. Pan, O.C. Uhlenbeck, A small metalloribozyme with a two-step mechanism. Nature 358(6387), 560–563 (1992)CrossRefGoogle Scholar
  2. 2.
    T. Lan, K. Furuya, Y. Lu, A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 46(22), 3896–3898 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Li, W. Zheng, A.H. Kwon, Y. Lu, In vitro selection and characterization of a highly efficient Zn (II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28(2), 481–488 (2000)CrossRefGoogle Scholar
  4. 4.
    H.W. Lee, D. F. Chinnapen, D. Sen, Structure-function investigation of a deoxyribozyme with dual chelatase and peroxidase activities. Pure Appl. Chem. 76(7-8), 1537–1545 (2004)CrossRefGoogle Scholar
  5. 5.
    N.C. Papanikolaou, E.G. Hatzidaki, S. Belivanis, G.N. Tzanakakis, A.M. Tsatsakis, Lead toxicity update. A brief review. Med. Sci. Monit. 11(10), RA329–RA336 (2005)PubMedGoogle Scholar
  6. 6.
    G.W. Goldstein, Developmental neurobiology of lead toxicity. Human lead exposure, 125–135 (1992)Google Scholar
  7. 7.
    L. Patrick, Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern. Med. Rev. 11(1), 2–23 (2006)PubMedGoogle Scholar
  8. 8.
    W.R. Farkas, Depolymerization of ribonucleic acid by plumbous ion. Biochimica et Biophysica Acta (BBA)-nucleic acids and protein. Synthesis 155(2), 401–409 (1968)Google Scholar
  9. 9.
    T. Pan, O.C. Uhlenbeck, In vitro selection of RNAs that undergo autolytic cleavage with lead (II). Biochemistry 31(16), 3887–3895 (1992)CrossRefGoogle Scholar
  10. 10.
    R.R. Breaker, G.F. Joyce, A DNA enzyme that cleaves RNA. Chem. Biol. 1(4), 223–229 (1994)CrossRefGoogle Scholar
  11. 11.
    A.K. Brown, J. Li, C.M.B. Pavot, Y. Lu, A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42(23), 7152–7161 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Li, Y. Lu, A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122(42), 10466–10467 (2000)CrossRefGoogle Scholar
  13. 13.
    P.J.J. Huang, J. Liu, Sensing parts-per-trillion Cd2+, Hg2+, and Pb2+ collectively and individually using phosphorothioate dnazymes. Anal. Chem. 86(12), 5999–6005 (2014)Google Scholar
  14. 14.
    X.H. Zhao, R.M. Kong, X.B. Zhang, H.M. Meng, W.N. Liu, W. Tan, G.L. Shen, R.Q. Yu, Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83(13), 5062–5066 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Saran, Q. Chen, J. Liu, Searching for a DNAzyme version of the Leadzyme. Mol. Evol. 81(5–6), 235–244 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Li, R. Geyer, D. Sen, Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35(21), 6911–6922 (1996)CrossRefGoogle Scholar
  17. 17.
    P. Travascio, Y. Li, D. Sen, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 5(9), 505–517 (1998)CrossRefGoogle Scholar
  18. 18.
    T. Li, E. Wang, S. Dong, Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 82(4), 1515–1520 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, Y. Tang, A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye. Talanta 136, 210–214 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Li, S. Dong, E. Wang, A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. Am. Chem. Soc. 132(38), 13156–13157 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Zhan, Y. Wu, L. Liu, H. Xing, L. He, X. Zhan, Y. Luo, P. Zhou, A simple fluorescent assay for lead (II) detection based on lead (II)-stabilized G-quadruplex formation. RSC Adv. 3(38), 16962–16966 (2013)CrossRefGoogle Scholar
  22. 22.
    C.L. Li, K.T. Liu, Y.W. Lin, H.T. Chang, Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 83(1), 225–230 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, J. Wang, F. Yang, X. Yang, Spectrophotometric detection of lead (II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim. Acta 171(1–2), 195–201 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Li, Y. Lu, Functional nucleic for analytical applications. (Springer New York, 2009)Google Scholar
  25. 25.
    J. Liu, Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125(22), 6642–6643 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Liu, Y. Lu, Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126(39), 12298–12305 (2004)CrossRefGoogle Scholar
  27. 27.
    Y.W. Lin, C.C. Huang, H.T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136(5), 863–871 (2011)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, L. Ma, Gold nanoparticle probes. Coord. Chem. Rev. 253(11), 1607–1618 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.W. Lin, C.W. Liu, H.T. Chang, DNA functionalized gold nanoparticles for bioanalysis. Anal. Methods 1(1), 14–24 (2009)CrossRefGoogle Scholar
  30. 30.
    K.W. Huang, C.J. Yu, W.L. Tseng, Sensitivity enhancement in the colorimetric detection of lead (II) ion using gallic acid–capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens. Bioelectron. 25(5), 984–989 (2010)CrossRefGoogle Scholar
  31. 31.
    R. Gunupuru, D. Maity, G.R. Bhadu, A. Chakraborty, D.N. Srivastava, P. Paul, Colorimetric detection of Cu2+ and Pb2+ ions using calix [4] arene functionalized gold nanoparticles. J. Chem. Sci. 126(3), 627–635 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Chai, C. Wang, T. Wang, L. Li, Z. Su, Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2(5), 1466–1470 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Yu, Y. Hong, P. Gao, M.K. Nazeeruddin, Glutathione modified gold nanoparticles for sensitive colorimetric detection of Pb2+ ions in rainwater polluted by leaking perovskite solar cells. Anal. Chem. 88(24), 12316–12322 (2016)CrossRefGoogle Scholar
  34. 34.
    A. D’Agostino, A. Taglietti, B. Bassi, A. Donà, P. Pallavicini, A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars. J. Nanopart. Res. 16(10), 2683 (2014)Google Scholar
  35. 35.
    Z. Wang, J.H. Lee, Y. Lu, Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 20(17), 3263–3267 (2008)CrossRefGoogle Scholar
  36. 36.
    H. Wei, B. Li, J. Li, S. Dong, E. Wang, DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology 19(9), 095501 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Elbaz, B. Shlyahovsky, I. Willner, A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem. Commun. 13, 1569–1571 (2008)Google Scholar
  38. 38.
    X. Zhu, X. Gao, Q. Liu, Z. Lin, B. Qiu, G. Chen, Pb2+-introduced activation of horseradish peroxidase (HRP)-mimicking DNAzyme. Chem. Commun. 47(26), 7437–7439 (2011)CrossRefGoogle Scholar
  39. 39.
    P. Travascio, A.J. Bennet, D.Y. Wang, D. Sen, A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 6(11), 779–787 (1999)CrossRefGoogle Scholar
  40. 40.
    Q. Zhang, Y. Cai, H. Li, D.M. Kong, H.X. Shen, Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes. Biosens. Bioelectron. 38(1), 331–336 (2012)CrossRefGoogle Scholar
  41. 41.
    N. Nagraj, J. Liu, S. Sterling, J. Wu, Y. Lu, DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Chem. Commun. 27, 4103–4105 (2009)CrossRefGoogle Scholar
  42. 42.
    H. Wang, Y. Kim, H. Liu, Z. Zhu, S. Bamrungsap, W. Tan, Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. Am. Chem. Soc. 131(23), 8221–8226 (2009)CrossRefGoogle Scholar
  43. 43.
    L. Zhang, N. Mi, Y. Zhang, M. Wei, H. Li, S. Yao, Label-free DNA sensor for Pb2+ based on a duplex–quadruplex exchange. Anal. Methods 5(21), 6100–6105 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Hou, X. Niu, F. Cui, A label-free biosensor for selective detection of DNA and Pb2+ based on a G-quadruplex. RSC Adv. 6(10), 7765–7771 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Liu, Y. Lu, Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol. Biol. 335, 275–288 (2006)PubMedGoogle Scholar
  46. 46.
    X.B. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal. Chem. 82(12), 5005–5011 (2010)CrossRefGoogle Scholar
  47. 47.
    Z. Yu, W. Zhou, J. Han, Y. Li, L. Fan, X. Li, Na+-induced conformational change of Pb2+-stabilized G-Quadruplex and its influence on Pb2+ detection. Anal. Chem. 88(19), 9375–9380 (2016)Google Scholar
  48. 48.
    S. Tang, P. Tong, H. Li, J. Tang, L. Zhang, Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dotstagging. Biosens. Bioelectron. 42, 608–611 (2013)CrossRefGoogle Scholar
  49. 49.
    E. Mohamed Ali, Y. Zheng, H.H. Yu, J.Y. Ying, Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem. 79(24), 9452–9458 (2007)CrossRefGoogle Scholar
  50. 50.
    M. Mozafari, F. Moztarzadeh, Microstructural and optical properties of spherical lead sulphide quantum dots-based optical sensors. Micro Nano Lett. 6(3), 161–164 (2011)CrossRefGoogle Scholar
  51. 51.
    M. Koneswaran, R. Narayanaswamy, RETRACTED ARTICLE: CdS/ZnS core-shell quantum dots capped with mercaptoacetic acid as fluorescent probes for Hg (II) ions. Microchim. Acta 178(1–2), 171–178 (2012)CrossRefGoogle Scholar
  52. 52.
    H. Qu, L. Cao, G. Su, W. Liu, R. Gao, C. Xia, J. Qin, Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J. Nanopart. Res. 16(12), 2762 (2014)Google Scholar
  53. 53.
    H. Hai, F. Yang, J. Li, Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv. 3(32), 13144–13148 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Li, X. Zhou, S. Guo, N. Wu, Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 43, 69–74 (2013)CrossRefGoogle Scholar
  55. 55.
    L. Magerusan, C. Socaci, M. Coros, F. Pogacean, M.C. Rosu, S. Gergely, S. Pruneanu, C. Leostean, I.O. Pana, Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology 28(11), 114001 (2017)CrossRefGoogle Scholar
  56. 56.
    Y. Zhou, L. Tang, G. Zeng, C. Zhang, X. Xie, Y. Liu, J. Wang, J. Tang, Y. Zhang, Y. Deng, Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons. Talanta 146, 641–647 (2016)CrossRefGoogle Scholar
  57. 57.
    Y. Zhu, G.m. Zeng, Y. Zhang, L. Tang, J. Chen, M. Cheng, L.h. Zhang, L. He, Y. Guo, X.x. He, Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+−induced G-rich DNA conformation. Analyst 139(19), 5014–5020 (2014)CrossRefGoogle Scholar
  58. 58.
    G. Liu, L. Zhang, D. Dong, Y. Liu, J. Li, A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Anal. Methods 8(39), 7040–7046 (2016)CrossRefGoogle Scholar
  59. 59.
    F. Yang, X. Zuo, Z. Li, W. Deng, J. Shi, G. Zhang, Q. Huang, S. Song, C. Fan, Bioassays: a bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays (Adv. Mater. 27/2014). Adv. Mater. 26(27), 4597–4597 (2014)CrossRefGoogle Scholar
  60. 60.
    Y. Xiao, A.A. Rowe, K.W. Plaxco, Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 129(2), 262–263 (2007)CrossRefGoogle Scholar
  61. 61.
    Y. Zhou, J. Zhang, L. Tang, B. Peng, G. Zeng, L. Luo, J. Gao, Y. Pang, Y. Deng, F. Zhang, A label to free GR to 5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator. Talanta 165, 274–281 (2017)CrossRefGoogle Scholar
  62. 62.
    Z. Lin, Y. Chen, X. Li, W. Fang, Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: electrochemical detection of Pb2+. Analyst 136(11), 2367–2372 (2011)CrossRefGoogle Scholar
  63. 63.
    M. Jarczewska, E. Kierzkowska, R. Ziółkowski, Ł. Górski, E. Malinowska, Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 101, 35–41 (2015)CrossRefGoogle Scholar
  64. 64.
    S. Tang, P. Tong, X. You, W. Lu, J. Chen, G. Li, L. Zhang, Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles. Electrochim. Acta 187, 286–292 (2016)CrossRefGoogle Scholar
  65. 65.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  66. 66.
    D.C. Marano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene. ACS nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  67. 67.
    H. Dong, W. Gao, F. Yan, H. Ji, H. Ju, Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82(13), 5511–5517 (2010)CrossRefGoogle Scholar
  68. 68.
    C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L.J. Romasanta, R. Verdejo, M.A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013)CrossRefGoogle Scholar
  69. 69.
    S. Ge, K. Wu, Y. Zhang, M. Yan, J. Yu, Based biosensor relying on flower-like reduced graphene guided enzymatically deposition of polyaniline for Pb2+ detection. Biosens. Bioelectron. 80, 215–221 (2016)Google Scholar
  70. 70.
    C. Li, L. Wei, X. Liu, L. Lei, G. Li, Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Anal. Chim. Acta 831, 60–64 (2014)CrossRefGoogle Scholar
  71. 71.
    X. Li, G. Wang, X. Ding, Y. Chen, Y. Gou, Y. Lu, A “turn-on” fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA. Phys. Chem. Chem. Phys. 15(31), 12800–12804 (2013)CrossRefGoogle Scholar
  72. 72.
    Z.S. Qian, X.Y. Shan, L.J. Chai, J.R. Chen, H. Feng, A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron. 68, 225–231 (2015)CrossRefGoogle Scholar
  73. 73.
    Y. Xu, X. Meng, J. Liu, S. Dang, L. Shi, L. Sun, Luminescent nanoprobes based on upconversion nanoparticles and single-walled carbon nanohorns or graphene oxide for detection of Pb2+ ion. CrystEngComm 18(22), 4032–4037 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations