Advertisement

Functional Nucleic Acid Based Biosensors for DNA Methylation Detection

  • Yunbo Luo
Chapter

Abstract

In recent years, epigenetic studies have largely concentrated on aging, embryonic development, and cancer. Presently, epigenetics is found to be important in many other areas, such as immune diseases, cardiovascular diseases, type 2 diabetes, insulin resistance, obesity, inflammation, and neurodegenerative diseases. Because epigenetic modifications can use artificial methods, by altering external or internal environmental factors, while having the ability to alter gene expression, epigenetics is considered to be an important mechanism for many unknown etiologies [1]. Great potential lies in the development of epigenetic therapies, and several inhibitors of enzymes controlling epigenetic modifications have shown promising antitumorigenic effects for some malignancies [2].

References

  1. 1.
    S.W. Choi, S. Friso, Epigenetics: a new bridge between nutrition and health. Adv. Nutr. 1(1), 8–16 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Egger et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990), 457–463 (2004)CrossRefGoogle Scholar
  3. 3.
    Li, X., et al., Dynamic changes of global DNA methylation and hypermethylation of cell adhesion-related genes in rat kidneys in response to ochratoxin A. World Mycotoxin J. 1–12 (2015)Google Scholar
  4. 4.
    Q. Dai et al., MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 15(1), 333 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhu, L., et al., miR-122 plays an important role in ochratoxin A-induced hepatocyte apoptosis in vitro and in vivo. Toxicol Res (2016)Google Scholar
  6. 6.
    X. Fan et al., Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Mulero-Navarro, M. Esteller, Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 68(1), 1–11 (2008)CrossRefGoogle Scholar
  8. 8.
    L.J. Rush, C. Plass, Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem. 307(2), 191–201 (2002)CrossRefGoogle Scholar
  9. 9.
    T.H. Bestor, The DNA methyltransferases of mammals. Hum. Mol. Genet. 9(16), 2395–2402 (2000)CrossRefGoogle Scholar
  10. 10.
    Y. Dong et al., DNA methylation as an early diagnostic marker of cancer (Review). Biomed Rep 2(3), 326–330 (2014)CrossRefGoogle Scholar
  11. 11.
    K.L. Tucker, Methylated cytosine and the brain: a new base for neuroscience. Neuron 30(3), 649–652 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Gardiner-Garden, M. Frommer, CpG islands in vertebrate genomes. J. Mol. Biol. 196(2), 261–282 (1987)CrossRefGoogle Scholar
  13. 13.
    F. Larsen et al., CpG islands as gene markers in the human genome. Genomics 13(4), 1095–1107 (1992)CrossRefGoogle Scholar
  14. 14.
    P.W. Laird, The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3(4), 253–266 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Udali et al., Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol. Asp. Med. 34(4), 883–901 (2013)CrossRefGoogle Scholar
  16. 16.
    T. Schoofs, W.E. Berdel, C. Muller-Tidow, Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 28(1), 1–14 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Hong, N. Ahuja, DNA methylation biomarkers of stool and blood for early detection of colon cancer. Genet Test Mol Biomarkers 17(5), 401–406 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Renner et al., Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol. 14(12), r137 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Szyf, DNA methylation signatures for breast cancer classification and prognosis. Genome Med 4(3), 26 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Zardo et al., Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32(3), 453–458 (2002)CrossRefGoogle Scholar
  21. 21.
    L. Zhang et al., Simultaneous determination of global DNA methylation and hydroxymethylation levels by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Biomol. Screen. 17(7), 877–884 (2012)CrossRefGoogle Scholar
  22. 22.
    M.F. Fraga, R. Rodriguez, M.J. Canal, Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21(14), 2990–2994 (2000)CrossRefGoogle Scholar
  23. 23.
    M.-L. Mo et al., Measurement of genome-wide DNA methylation predicts survival benefits from chemotherapy in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 141(5), 901–908 (2015)CrossRefGoogle Scholar
  24. 24.
    J.G. Herman et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. 93(18), 9821–9826 (1996)CrossRefGoogle Scholar
  25. 25.
    W.A. Palmisano et al., Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60(21), 5954–5958 (2000)PubMedGoogle Scholar
  26. 26.
    H. Guo et al., The DNA methylation landscape of human early embryos. Nature 511(7511), 606–610 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Shi et al., Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J. Cell. Biochem. 88(1), 138–143 (2003)CrossRefGoogle Scholar
  28. 28.
    W. Xu et al., Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor. Biosens. Bioelectron. 80, 654–660 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Syedmoradi, F. Esmaeili, M.L. Norton, Towards DNA methylation detection using biosensors. Analyst 141(21), 5922–5943 (2016)CrossRefGoogle Scholar
  30. 30.
    J.G. Herman et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9821–9826 (1996)CrossRefGoogle Scholar
  31. 31.
    L. Zhang et al., Development of techniques for DNA-methylation analysis. TrAC Trends Anal. Chem. 72, 114–122 (2015)CrossRefGoogle Scholar
  32. 32.
    B.P. Fox, R.P. Kandpal, Transcriptional silencing of EphB6 receptor tyrosine kinase in invasive breast carcinoma cells and detection of methylated promoter by methylation specific PCR. Biochem. Biophys. Res. Commun. 340(1), 268–276 (2006)CrossRefGoogle Scholar
  33. 33.
    Q. Zhang et al., A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol. Oncol. 130(1), 132–139 (2013)CrossRefGoogle Scholar
  34. 34.
    Q. An et al., Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett. 188(1-2), 109–114 (2002)CrossRefGoogle Scholar
  35. 35.
    L. Bai et al., Methylation-sensitive restriction enzyme nested real time PCR, a potential approach for sperm DNA identification. J. Forensic Legal Med. 34, 34–39 (2015)CrossRefGoogle Scholar
  36. 36.
    P.W. Laird, Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11(3), 191–203 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Bibikova et al., Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1(1), 177–200 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Pape et al., 549-DNA methylation biomarkers and treatment Effects of a Corticotropin Releasing Hormone Type 1 Receptor Antagonist in a Biologically-Defined Subset of PTSD-Patients. Biol. Psychiatry 81(10), S222 (2017)CrossRefGoogle Scholar
  39. 39.
    Sanchez-Mut, J.V., et al., Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex. Synapse, 71(6), (2017)CrossRefGoogle Scholar
  40. 40.
    M. Frommer et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89(5), 1827–1831 (1992)CrossRefGoogle Scholar
  41. 41.
    P. Subiyantoro, Methylation detection of oral cancer using bisulfite sequencing. Int. J. Oral Maxillofac. Surg. 44, e291–e292 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Meissner et al., Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33(18), 5868–5877 (2005)CrossRefGoogle Scholar
  43. 43.
    H. Gu et al., Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7(2), 133–136 (2010)CrossRefGoogle Scholar
  44. 44.
    H. Guo et al., Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 10(5), 645–659 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Guo et al., Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23(12), 2126–2135 (2013)CrossRefGoogle Scholar
  46. 46.
    H. Yamada et al., The pH effect on the naphthoquinone-photosensitized oxidation of 5-methylcytosine. Chemistry 14(33), 10453–10461 (2008)CrossRefGoogle Scholar
  47. 47.
    F. Guo et al., The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161(6), 1437–1452 (2015)CrossRefGoogle Scholar
  48. 48.
    D.G. Burke et al., Accurate measurement of DNA methylation that is traceable to the international system of units. Anal. Chem. 81(17), 7294–7301 (2009)CrossRefGoogle Scholar
  49. 49.
    P. Wang et al., Investigation of DNA methylation by direct electrocatalytic oxidation. Chem. Commun. (Camb.) 46(41), 7781–7783 (2010)CrossRefGoogle Scholar
  50. 50.
    K. Tanaka et al., Direct labeling of 5-methylcytosine and its applications. J. Am. Chem. Soc. 129(17), 5612–5620 (2007)CrossRefGoogle Scholar
  51. 51.
    P. Wang et al., Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens. Bioelectron. 45, 34–39 (2013)CrossRefGoogle Scholar
  52. 52.
    S. Bareyt, T. Carell, Selective detection of 5-methylcytosine sites in DNA. Angew. Chem. Int. Ed. Eng. 47(1), 181–184 (2008)CrossRefGoogle Scholar
  53. 53.
    Y. Xu et al., Chemical-oxidation cleavage triggered isothermal exponential amplification reaction for attomole gene-specific methylation analysis. Anal. Chem. 87(5), 2945–2951 (2015)CrossRefGoogle Scholar
  54. 54.
    S. Pan et al., Double recognition of oligonucleotide and protein in the detection of DNA methylation with surface plasmon resonance biosensors. Biosens. Bioelectron. 26(2), 850–853 (2010)CrossRefGoogle Scholar
  55. 55.
    R. Gao et al., Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler. Biosens. Bioelectron. 86, 321–329 (2016)CrossRefGoogle Scholar
  56. 56.
    T. Liu et al., Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Anal. Chem. 82(1), 229–233 (2010)CrossRefGoogle Scholar
  57. 57.
    X. Jing et al., DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens. Bioelectron. 58, 40–47 (2014)CrossRefGoogle Scholar
  58. 58.
    J.D. Suter et al., Label-free DNA methylation analysis using opto-fluidic ring resonators. Biosens. Bioelectron. 26(3), 1016–1020 (2010)CrossRefGoogle Scholar
  59. 59.
    Y. Shin et al., Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors Actuators B Chem. 177, 404–411 (2013)CrossRefGoogle Scholar
  60. 60.
    W.C. Maki et al., Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens. Bioelectron. 23(6), 780–787 (2008)CrossRefGoogle Scholar
  61. 61.
    J. Yu et al., Detection of DNA Methylation with Aerolysin Nanopore. Biophys. J. 112(3), 332a (2017)CrossRefGoogle Scholar
  62. 62.
    H. Qiu et al., Detection and mapping of DNA methylation with 2D material nanopores. NPJ 2D Mater Appl 1(1), 3 (2017)CrossRefGoogle Scholar
  63. 63.
    A. Sarathy, H. Qiu, J.P. Leburton, Graphene nanopores for electronic recognition of DNA methylation. J. Phys. Chem. B 121(15), 3757–3763 (2017)CrossRefGoogle Scholar
  64. 64.
    Y. Wang et al., Fast and precise detection of DNA methylation with tetramethylammonium-filled nanopore. Sci. Rep. 7(1), 183 (2017)CrossRefGoogle Scholar
  65. 65.
    L. Ouyang et al., A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron. 92, 755–762 (2017)CrossRefGoogle Scholar
  66. 66.
    J. Gu et al., Association between P(16INK4a) promoter methylation and non-small cell lung cancer: a meta-analysis. PLoS One 8(4), e60107 (2013)CrossRefGoogle Scholar
  67. 67.
    J. Wang, Z. Zhu, H. Ma, Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal. Chem. 85(4), 2096–2101 (2013)CrossRefGoogle Scholar
  68. 68.
    M. Nazmul Islam et al., Optical biosensing strategies for DNA methylation analysis. Biosens. Bioelectron. 92, 668–678 (2017)CrossRefGoogle Scholar
  69. 69.
    L. Krejcova et al., Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron. 97, 384–399 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science &Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations