Functional Nucleic Acid Biosensors for Small Molecules

  • Yunbo Luo


Functional nucleic acid including aptamer, DNAzyme, and triplex DNA has inspired increasing researchers’ attention due to variability and specificity of sequence and potential in biosensor fabrication. Especially, the rapid development of aptamer SELEX technique for small molecules makes a significant contribution to the recognition of small molecules. This highly specific affinity could finally be transduced into an electrochemical or optical signal output for a quantitative determination. Moreover, a variety of nanomaterials such as AuNPs, carbon nanotubes, graphene, and carbon black have been exploited to be modified onto the surface of biosensor for ultrasensitive detection. Additionally, the combination of nucleic acid amplification technique and aptamer is also an effective approach to improve the sensitivity of biosensor. It promises the promotion of aptasensors in performance toward a new level. In this chapter, we will review the functional nucleic acid biosensors for small molecules except heavy metal mentioned at previous chapter.


Small molecule Functional nucleic acid Aptamer Biosensor 


  1. 1.
    I. Kralj Cigić, H. Prosen, An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 10(1), 62–115 (2009)CrossRefGoogle Scholar
  2. 2.
    I. Palchetti, M. Mascini, Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal. Bioanal. Chem. 391(2), 455–471 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    I. Bazin, S.A. Tria, A. Hayat, et al., New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 87, 285–298 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    G. Catanante, A. Rhouati, A. Hayat, et al., An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis 28(8), 1750–1763 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Guo, F. Wen, N. Zheng, et al., Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. Biosens. Bioelectron. 56, 340–344 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)CrossRefGoogle Scholar
  7. 7.
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818 (1990)CrossRefGoogle Scholar
  8. 8.
    M. Yüce, N. Ullah, H. Budak, Trends in aptamer selection methods and applications. Analyst 140(16), 5379–5399 (2015)CrossRefGoogle Scholar
  9. 9.
    M. McKeague, A. De Girolamo, S. Valenzano, et al., Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal. Chem. 87(17), 8608–8612 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    J.A. Cruz-Aguado, G. Penner, Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56(22), 10456–10461 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    L. Zhu, X. Shao, Y. Luo, et al., Two-way gold nanoparticle label-free sensing of specific sequence and small molecule targets using switchable concatemers. ACS Chem. Biol. 12(5), 1373–1380 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    C. Yang, V. Lates, B. Prieto-Simón, et al., Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta 116, 520–526 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    N. Duan, S. Wu, X. Ma, et al., Gold nanoparticle-based fluorescence resonance energy transfer aptasensor for ochratoxin A detection. Anal. Lett. 45(7), 714–723 (2012)CrossRefGoogle Scholar
  14. 14.
    J.J. Zhang, Z. Li, S. Zhao, et al., Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 141(13), 4029–4034 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    M. McKeague, R. Velu, K. Hill, et al., Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6(8), 2435–2452 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    H. Kuang, W. Chen, D. Xu, et al., Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens. Bioelectron. 26(2), 710–716 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    J. Zhang, X. Zhang, G. Yang, et al., A signal-on fluorescent aptasensor based on Tb 3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat. Biosens. Bioelectron. 41, 704–709 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Zhao, Y. Yang, Y. Luo, et al., Double detection of mycotoxins based on SERS labels embedded Ag@Au core–shell nanoparticles. ACS Appl. Mater. Interfaces 7(39), 21780–21786 (2015)CrossRefPubMedGoogle Scholar
  19. 19.
    W.B. Shim, H. Mun, H.A. Joung, et al., Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36(1), 30–35 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review[J]. Appl. Biochem. Biotechnol. 175(6), 3093–3119 (2015)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Mostafalou, M. Abdollahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives[J]. Toxicol. Appl. Pharmacol. 268(2), 157–177 (2013)CrossRefPubMedGoogle Scholar
  22. 22.
    A.I. García-Valcárcel, J.L. Tadeo, A combination of ultrasonic assisted extraction with LC–MS/MS for the determination of organophosphorus pesticides in sludge[J]. Anal. Chim. Acta 641(1), 117–123 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    D.I. Kolberg, O.D. Prestes, M.B. Adaime, et al., Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC-MS[J]. Food Chem. 125(4), 1436–1442 (2011)CrossRefGoogle Scholar
  24. 24.
    M.R. Saidur, A.R.A. Aziz, W.J. Basirun, Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review[J]. Biosens. Bioelectron. 90, 125–139 (2017)CrossRefPubMedGoogle Scholar
  25. 25.
    S. Hassani, S. Momtaz, F. Vakhshiteh, et al., Biosensors and their applications in detection of organophosphorus pesticides in the environment[J]. Arch. Toxicol., 1–22 (2017)Google Scholar
  26. 26.
    Y. Du, S. Dong, Nucleic acid biosensors: recent advances and perspectives[J]. Anal. Chem. 89(1), 189–215 (2017)CrossRefPubMedGoogle Scholar
  27. 27.
    J. He, Y. Liu, M. Fan, et al., Isolation and identification of the DNA aptamer target to acetamiprid[J]. J. Agric. Food Chem. 59(5), 1582–1586 (2011)CrossRefPubMedGoogle Scholar
  28. 28.
    L. Fan, G. Zhao, H. Shi, et al., A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid[J]. Biosens. Bioelectron. 43, 12–18 (2013)CrossRefPubMedGoogle Scholar
  29. 29.
    H. Shi, G. Zhao, M. Liu, et al., Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism[J]. J. Hazard. Mater. 260, 754–761 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    P. Weerathunge, R. Ramanathan, R. Shukla, et al., Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing[J]. Anal. Chem. 86(24), 11937–11941 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    B. Lin, Y. Yu, R. Li, et al., Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer[J]. Sensors Actuators B Chem. 229, 100–109 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Tian, Y. Wang, Z. Sheng, et al., A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length[J]. Anal. Biochem. 513, 87–92 (2016)CrossRefPubMedGoogle Scholar
  33. 33.
    J. Guo, Y. Li, L. Wang, et al., Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots[J]. Anal. Bioanal. Chem. 408(2), 557–566 (2016)CrossRefPubMedGoogle Scholar
  34. 34.
    Y. Qi, F.R. Xiu, M. Zheng, et al., A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism[J]. Biosens. Bioelectron. 83, 243–249 (2016)CrossRefPubMedGoogle Scholar
  35. 35.
    W. Yang, Y. Wu, H. Tao, et al. Ultrasensitive and selective colorimetric detection of acetamiprid pesticide based on the enhanced peroxidase-like activity of gold nanoparticles[J]. Anal. Methods, 9(37), 5484–5493 (2017)CrossRefGoogle Scholar
  36. 36.
    Q. Liu, J. Huan, X. Dong, et al., Resonance energy transfer from CdTe quantum dots to gold nanorods using MWCNTs/rGO nanoribbons as efficient signal amplifier for fabricating visible-light-driven “on-off-on” photoelectrochemical acetamiprid aptasensor[J]. Sensors Actuators B Chem. 235, 647–654 (2016)CrossRefGoogle Scholar
  37. 37.
    L. Wang, X. Liu, Q. Zhang, et al., Selection of DNA aptamers that bind to four organophosphorus pesticides[J]. Biotechnol. Lett. 34(5), 869–874 (2012)CrossRefPubMedGoogle Scholar
  38. 38.
    C. Zhang, L. Wang, Z. Tu, et al., Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay[J]. Biosens. Bioelectron. 55, 216–219 (2014)CrossRefPubMedGoogle Scholar
  39. 39.
    P. E. Sanchez, DNA aptamer development for detection of atrazine and protective antigen toxin using fluorescence polarization[J]. Electronic Theses & Dissertation (2012)Google Scholar
  40. 40.
    R.M. Williams, C.L. Crihfield, S. Gattu, et al., In vitro selection of a single-stranded DNA molecular recognition element against atrazine[J]. Int. J. Mol. Sci. 15(8), 14332–14347 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    J. Bruno, J. Chanpong, Methods of producing competitive aptamer FRET reagents and assays: U.S. Patent Application 14/294,847[P]. 3 June 2014.Google Scholar
  42. 42.
    F. Barahona, C.L. Bardliving, A. Phifer, et al., An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy[J]. Ind. Biotechnol. 9(1), 42–50 (2013)CrossRefGoogle Scholar
  43. 43.
    Z. Lei, C. Zhang, Y. Liu, et al., Selection of chlorpyrifos-binding ssDNA aptamer by SELEX[J]. Jiangsu J. Agric. Sci. 1, 035 (2012)Google Scholar
  44. 44.
    Y. Jiao, H. Jia, Y. Guo, et al., An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes[J]. RSC Adv. 6(63), 58541–58548 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Jiao, W. Hou, J. Fu, et al., A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos[J]. Sensors Actuators B Chem. 243, 1164–1170 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Jokar, M.H. Safaralizadeh, F. Hadizadeh, et al., Apta-nanosensor preparation and in vitro assay for rapid Diazinon detection using a computational molecular approach[J]. J. Biomol. Struct. Dyn. 35(2), 343–353 (2017)CrossRefPubMedGoogle Scholar
  47. 47.
    W. Bai, C. Zhu, J. Liu, et al., Gold nanoparticle–based colorimetric aptasensor for rapid detection of six organophosphorous pesticides[J]. Environ. Toxicol. Chem. 34(10), 2244–2249 (2015)CrossRefPubMedGoogle Scholar
  48. 48.
    Y.S. Kwon, V.T. Nguyen, J.G. Park, et al., Detection of iprobenfos and edifenphos using a new multi-aptasensor[J]. Anal. Chim. Acta 868, 60–66 (2015)CrossRefPubMedGoogle Scholar
  49. 49.
    D. Jiang, X. Du, Q. Liu, et al., Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay[J]. Analyst 140(18), 6404–6411 (2015)CrossRefPubMedGoogle Scholar
  50. 50.
    A. Fei, Q. Liu, J. Huan, et al., Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites[J]. Biosens. Bioelectron. 70, 122–129 (2015)CrossRefPubMedGoogle Scholar
  51. 51.
    T. Tang, J. Deng, M. Zhang, et al., Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides[J]. Talanta 146, 55–61 (2016)CrossRefPubMedGoogle Scholar
  52. 52.
    P. Wang, Y. Wan, A. Ali, et al., Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate[J]. Sci. China Chem. 59(2), 237–242 (2016)CrossRefGoogle Scholar
  53. 53.
    T. Liu, X. Zhang, J. Hao, et al., Acetylcholinesterase-free colorimetric detection of Chlorpyrifos in fruit juice based on the oxidation reaction of H2O2 with Chlorpyrifos and ABTS2− catalyzed by hemin/G-Quadruplex DNAzyme[J]. Food Anal. Methods 8(6), 1556–1564 (2015)CrossRefGoogle Scholar
  54. 54.
    X. Liu, Y. Li, J. Liang, et al., Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid[J]. Talanta 160, 99–105 (2016)CrossRefPubMedGoogle Scholar
  55. 55.
    X. Liu, M. Song, T. Hou, et al., Label-free homogeneous electroanalytical platform for pesticide detection based on acetylcholinesterase-mediated DNA conformational switch integrated with rolling circle amplification[J]. ACS Sensors 2(4), 562–568 (2017)CrossRefPubMedGoogle Scholar
  56. 56.
    Y. Yang, X. Liu, M. Wu, et al., Electrochemical biosensing strategy for highly sensitive pesticide assay based on mercury ion-mediated DNA conformational switch coupled with signal amplification by hybridization chain reaction[J]. Sensors Actuators B Chem. 236, 597–604 (2016)CrossRefGoogle Scholar
  57. 57.
    X. Liu, W. Li, T. Hou, et al., Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification[J]. Anal. Chem. 87(7), 4030–4036 (2015)CrossRefPubMedGoogle Scholar
  58. 58.
    X. Wang, T. Hou, S. Dong, et al., Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide[J]. Biosens. Bioelectron. 77, 644–649 (2016)CrossRefPubMedGoogle Scholar
  59. 59.
    J. Liu, Z. Cao, Y. Lu, Functional nucleic acid sensors[J]. Chem. Rev. 109(5), 1948–1998 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    M. Zayats, Y. Huang, R. Gill, et al., Label-free and reagentless aptamer-based sensors for small molecules[J]. J. Am. Chem. Soc. 128(42), 13666–13667 (2006)CrossRefPubMedGoogle Scholar
  61. 61.
    G. Shen, Y. Guo, X. Sun, et al., Electrochemical aptasensor based on prussian blue-chitosan-glutaraldehyde for the sensitive determination of tetracycline[J]. Nano-Micro Lett. 6(2), 143–152 (2014)CrossRefGoogle Scholar
  62. 62.
    L. Shen, Z. Chen, Y. Li, et al., A chronocoulometric aptamer sensor for adenosine monophosphate[J]. Chem. Commun. 21, 2169–2171 (2007)CrossRefGoogle Scholar
  63. 63.
    X. Sun, F. Li, G. Shen, et al., Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection[J]. Analyst 139(1), 299–308 (2014)CrossRefPubMedGoogle Scholar
  64. 64.
    M. Roushani, F. Shahdost-fard, A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform[J]. Anal. Chim. Acta 853, 214–221 (2015)CrossRefPubMedGoogle Scholar
  65. 65.
    M. Chen, N. Gan, H. Zhang, et al., Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification[J]. Microchim. Acta 183(3), 1099–1106 (2016)CrossRefGoogle Scholar
  66. 66.
    W. Guo, N. Sun, X. Qin, et al., A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF 6 and nanoporous PtTi alloy[J]. Biosens. Bioelectron. 74, 691–697 (2015)CrossRefPubMedGoogle Scholar
  67. 67.
    M.N. Stojanovic, P. de Prada, D.W. Landry, Fluorescent sensors based on aptamer self-assembly[J]. J. Am. Chem. Soc. 122(46), 11547–11548 (2000)CrossRefPubMedGoogle Scholar
  68. 68.
    Y. Wang, J. Li, H. Wang, et al., Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes[J]. Anal. Chem. 82(15), 6607–6612 (2010)CrossRefPubMedGoogle Scholar
  69. 69.
    C. Ma, X. Yang, K. Wang, et al., A novel kinase-based ATP assay using molecular beacon[J]. Anal. Biochem. 372(1), 131–133 (2008)CrossRefPubMedGoogle Scholar
  70. 70.
    B. Shlyahovsky, D. Li, Y. Weizmann, et al., Spotlighting of cocaine by an autonomous aptamer-based machine[J]. J. Am. Chem. Soc. 129(13), 3814–3815 (2007)CrossRefPubMedGoogle Scholar
  71. 71.
    L.M. Lu, X.B. Zhang, R.M. Kong, et al., A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal[J]. J. Am. Chem. Soc. 133(30), 11686–11691 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    H.M. Zhao, S. Gao, M. Liu, Y.Y. Chang, X.F. Fan, X. Quan, Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim. Acta 180(9–10), 829–835 (2013)CrossRefGoogle Scholar
  73. 73.
    F. Yuan, H.M. Zhao, Z.N. Zhang, L.C. Gao, J.T. Xu, X. Quan, Fluorescent biosensor for sensitive analysis of oxytetracycline based on an indirectly labelled long-chain aptamer. RSC Adv. 5(72), 58895–58901 (2015)CrossRefGoogle Scholar
  74. 74.
    H. Li, D.E. Sun, Y.J. Liu, Z.H. Liu, An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens. Bioelectron. 55, 149–156 (2014)CrossRefPubMedGoogle Scholar
  75. 75.
    Y. Wang, B. Liu, ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene[J]. Analyst 133(11), 1593–1598 (2008)CrossRefPubMedGoogle Scholar
  76. 76.
    J.L. He, Z.S. Wu, H. Zhou, et al., Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal. Chem. 82(4), 1358–1364 (2010)CrossRefPubMedGoogle Scholar
  77. 77.
    Y. Xiang, A. Tong, Y. Lu, Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range[J]. J. Am. Chem. Soc. 131(42), 15352–15357 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    P. Song, Y. Xiang, H. Xing, et al., Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules[J]. Anal. Chem. 84(6), 2916–2922 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Y. Xiang, Z. Wang, H. Xing, et al., Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach[J]. Anal. Chem. 82(10), 4122–4129 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    W. Zhao, W. Chiuman, M.A. Brook, et al., Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation[J]. Chembiochem 8(7), 727–731 (2007)CrossRefPubMedGoogle Scholar
  81. 81.
    J.L. Chávez, W. Lyon, N. Kelley-Loughnane, et al., Theophylline detection using an aptamer and DNA–gold nanoparticle conjugates[J]. Biosens. Bioelectron. 26(1), 23–28 (2010)CrossRefPubMedGoogle Scholar
  82. 82.
    S.J. Chen, Y.F. Huang, C.C. Huang, et al., Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles[J]. Biosens. Bioelectron. 23(11), 1749–1753 (2008)CrossRefPubMedGoogle Scholar
  83. 83.
    F. Li, J. Zhang, X. Cao, et al., Adenosine detection by using gold nanoparticles and designed aptamer sequences[J]. Analyst 134(7), 1355–1360 (2009)CrossRefPubMedGoogle Scholar
  84. 84.
    J. Wang, L. Wang, X. Liu, et al., A gold nanoparticle-based aptamer target binding readout for ATP assay[J]. Adv. Mater. 19(22), 3943–3946 (2007)CrossRefGoogle Scholar
  85. 85.
    J. Zhang, L. Wang, D. Pan, et al., Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures[J]. Small 4(8), 1196–1200 (2008)CrossRefPubMedGoogle Scholar
  86. 86.
    Y.S. Kim, J.H. Kim, I.A. Kim, S.J. Lee, J. Jurng, M.B. Gu, A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens. Bioelectron. 26(4), 1644–1649 (2010)CrossRefPubMedGoogle Scholar
  87. 87.
    Y.L. Luo, J.Y. Xu, Y. Li, H.T. Gao, J.J. Guo, F. Shen, C.Y. Sun, A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54, 7–15 (2015)CrossRefGoogle Scholar
  88. 88.
    H.J. Gao, N. Gan, D.D. Pan, Y.J. Chen, T.H. Li, Y.T. Cao, T. Fu, A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nanoperoxidase-polymer. Anal. Methods 7(16), 6528–6536 (2015)CrossRefGoogle Scholar
  89. 89.
    Z.L. Mei, H.Q. Chu, W. Chen, F. Xue, J. Liu, H.N. Xu, R. Zhang, L. Zheng, Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens. Bioelectron. 39(1), 26–30 (2013)CrossRefPubMedGoogle Scholar
  90. 90.
    B. Shen, J. Li, W. Cheng, et al., Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification[J]. Microchim. Acta 182(1–2), 361–367 (2015)CrossRefGoogle Scholar
  91. 91.
    Q. Chen, Q. Guo, Y. Chen, et al., An enzyme-free and label-free fluorescent biosensor for small molecules by G-quadruplex based hybridization chain reaction[J]. Talanta 138, 15–19 (2015)CrossRefPubMedGoogle Scholar
  92. 92.
    X. Wang, S. Dong, P. Gai, et al., Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy[J]. Biosens. Bioelectron. 82, 49–54 (2016)CrossRefPubMedGoogle Scholar
  93. 93.
    N.M. Danesh, M. Ramezani, A.S. Emrani, et al., A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin[J]. Biosens. Bioelectron. 75, 123–128 (2016)CrossRefGoogle Scholar
  94. 94.
    D. Li, B. Shlyahovsky, J. Elbaz, et al., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme− aptamer conjugates[J]. J. Am. Chem. Soc. 129(18), 5804–5805 (2007)CrossRefPubMedGoogle Scholar
  95. 95.
    J. Elbaz, B. Shlyahovsky, D. Li, et al., Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations[J]. Chembiochem 9(2), 232–239 (2008)CrossRefPubMedGoogle Scholar
  96. 96.
    C. Teller, S. Shimron, I. Willner, Aptamer− DNAzyme hairpins for amplified biosensing[J]. Anal. Chem. 81(21), 9114–9119 (2009)CrossRefPubMedGoogle Scholar
  97. 97.
    Y. Du, B. Li, S. Guo, et al., G-Quadruplex-based DNAzyme for colorimetric detection of cocaine: Using magnetic nanoparticles as the separation and amplification element[J]. Analyst 136(3), 493–497 (2011)CrossRefPubMedGoogle Scholar
  98. 98.
    S. Bi, B. Luo, J. Ye, et al., Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification[J]. Biosens. Bioelectron. 62, 208–213 (2014)CrossRefPubMedGoogle Scholar
  99. 99.
    L. Hao, N. Duan, S. Wu, et al., Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles[J]. Anal. Bioanal. Chem. 407(26), 7907–7915 (2015)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science &Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations