Advertisement

Oxidative Modification of Trichocyte Keratins

  • Jolon M. Dyer
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)

Abstract

Oxidation of keratin results in a range of deleterious effects, including discolouration and compromised physical and mechanical properties. Keratin oxidative degradation is driven by molecular-level events, with accumulation of modifications at the protein primary level resulting directly in changes to secondary, tertiary and quaternary structure, as well as eventually changes in the observable physical and chemical properties. Advances in proteomic analysis techniques provide an increasingly clearer insight into the cascade of molecular modification underpinning keratin oxidation and how this translates through to higher order changes in properties. This chapter summarises the effects of oxidation on keratin-based materials, the types of molecular modification associated with this, and advances in techniques and approaches for characterising this modification.

Keywords

Keratin Protein Oxidation Redox Modification 

References

  1. 1.
    Dean, R. T., et al. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochemical Journal, 324(Pt 1), 1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hashimoto, K. (1988). The structure of human hair. Clinics in Dermatology, 6(4), 7–21.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Popescu, C., & Höcker, H. (2007). Hair – The most sophisticated biological composite material. Chemical Society Reviews, 36(8), 1282–1291.PubMedCrossRefGoogle Scholar
  4. 4.
    Bringans, S. D., et al. (2007). Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology, 16(11), 951–960.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nogueira, A. C. S., et al. (2007). Photo yellowing of human hair. Journal of Photochemistry and Photobiology B: Biology, 88(2-3), 119–125.CrossRefGoogle Scholar
  6. 6.
    Nogueira, A. C. S., Dicelio, L. E., & Joekes, I. (2006). About photodamage of human hair. Photochemical and Photobiological Sciences, 5, 165–169.PubMedCrossRefGoogle Scholar
  7. 7.
    Dawber, R. (1996). Hair: Its structure and response to cosmetic preparations. Clinics in Dermatology, 14(1), 105–112.PubMedCrossRefGoogle Scholar
  8. 8.
    MacKinnon, P. J., Powell, B. C., & Rogers, G. E. (1990). Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. Journal of Cell Biology, 111(6), 2587–2600.CrossRefPubMedGoogle Scholar
  9. 9.
    Millington, K. R. (2006). Photoyellowing of wool. Part 1: Factors affecting photoyellowing and experimental techniques. Coloration Technology, 122(4), 169–186.CrossRefGoogle Scholar
  10. 10.
    Duffield, P. A., & Lewis, D. M. (1985). The yellowing and bleaching of wool. Review of Progress in Coloration, 15, 38–51.CrossRefGoogle Scholar
  11. 11.
    Dyer, J. M., Bringans, S. D., & Bryson, W. G. (2006). Determination of photo-oxidation products within photoyellowed bleached wool proteins. Photochemistry and Photobiology, 82(2), 551–557.PubMedCrossRefGoogle Scholar
  12. 12.
    Dyer, J. M., Bringans, S. D., & Bryson, W. G. (2006). Characterisation of photo-oxidation products within photoyellowed wool proteins: Tryptophan and tyrosine derived chromophores. Photochemical and Photobiological Sciences, 5(7), 698–706.PubMedCrossRefGoogle Scholar
  13. 13.
    Dyer, J. M., et al. (2008). The photoyellowing of stilbene-derived fluorescent whitening agents—Mass spectrometric characterization of yellow photoproducts. Photochemistry and Photobiology, 84(1), 145–153.PubMedGoogle Scholar
  14. 14.
    Giacomoni, P. U. (2007). Biophysical and physiological effects of solar radiation on human skin. In D. P. J. Häder & Giulio (Eds.), Comprehensive series in photochemical and photobiological sciences (Vol. 10, p. 341). Cambridge: RSC Publishing.Google Scholar
  15. 15.
    Song, H. K., Wehrli, F. W., & Ma, J. (1997). In vivo MR microscopy of the human skin. Magnetic Resonance in Medicine, 37(2), 185–191.PubMedCrossRefGoogle Scholar
  16. 16.
    Duval, C., Regnier, M., & Schmidt, R. (2001). Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Research, 14(5), 348–355.PubMedCrossRefGoogle Scholar
  17. 17.
    Thiele, J. J., et al. (2001). The antioxidant network of the stratum corneum. Current Problems in Dermatology, 29, 26–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Sander, C. S., et al. (2002). Photoaging is associated with protein oxidation in human skin in vivo. Journal of Investigative Dermatology, 118(4), 618–625.PubMedCrossRefGoogle Scholar
  19. 19.
    Gilchrest, B. A. (1996). A review of skin ageing and its medical therapy. British Journal of Dermatology, 135, 867–875.PubMedCrossRefGoogle Scholar
  20. 20.
    Kochevar, I. E. (1999). Molecular and cellular effects of UV radiation relevant to chronic photodamage. In B. A. Gilchrest (Ed.), Photodamage (pp. 51–67).Google Scholar
  21. 21.
    Frederick, J. E., & Lubin, D. (1988). Possible long-term changes in biologically active ultraviolet radiation reaching the ground. Photochemistry and Photobiology, 47, 571–578.PubMedCrossRefGoogle Scholar
  22. 22.
    Teale, W. W. J. (1960). The ultraviolet fluorescence of proteins in neutral solution. Biochemical Journal, 76, 381–388.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chiu, H. C., & Bersohn, R. (1977). Electronic energy transfer between tyrosine and tryptophan in the peptides trp-(pro)n-Tyr. Biopolymers, 16(2), 277–288.PubMedCrossRefGoogle Scholar
  24. 24.
    Simpson, W. S. (1995). Origins of variation in the fluorescence patterns of wool and wool proteins. In Proceedings of the 9th International Wool Textile Research Conference. Biella, Italy.Google Scholar
  25. 25.
    Creed, D. (1984). The photophysics and photochemistry of the near-UV absorbing amino acids – II. Tyrosine and its simple derivatives. Photochemistry and Photobiology, 39(4), 563–575.CrossRefGoogle Scholar
  26. 26.
    Creed, D. (1984). The photophysics and photochemistry of the near-UV absorbing amino acids – I. Tryptophan and its simple derivatives. Photochemistry and Photobiology, 39(4), 537–562.CrossRefGoogle Scholar
  27. 27.
    Gracanin, M., et al. (2009). Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products. Free Radical Biology and Medicine, 47, 92–102.PubMedCrossRefGoogle Scholar
  28. 28.
    Kerwin, B. A., & Remmele, R. L. J. (2007). Protect from light: Photodegradation and protein biologics. Journal of Pharmaceutical Sciences, 96(6), 1468–1479.PubMedCrossRefGoogle Scholar
  29. 29.
    Mizdrak, J., et al. (2008). Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radical Biology and Medicine, 44(6), 1108–1119.PubMedCrossRefGoogle Scholar
  30. 30.
    Davies, M. J. (2004). Reactive species formed on proteins exposed to singlet oxygen. Photochemical and Photobiological Sciences, 3(1), 17–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Evans, A. O., Marsh, J. M., & Wickett, R. R. (2011). The uptake of water hardness metals by human hair. Journal of Cosmetic Science, 62(4), 383–391.PubMedGoogle Scholar
  32. 32.
    Marsh, J. M., et al. (2014). Role of copper in photochemical damage to hair. International Journal of Cosmetic Science, 36(1), 32–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Marsh, J. M., et al. (2007). Hair coloring systems delivering color with reduced fiber damage. Journal of Cosmetic Science, 58(5), 495–503.PubMedGoogle Scholar
  34. 34.
    Zhang, H., et al. (2013). The influence of copper (II) ions on wool photostability in the dry state. Coloration Technology, 29(5), 323–329.CrossRefGoogle Scholar
  35. 35.
    Naqvi, K. R., et al. (2013). The role of chelants in controlling Cu(II)-induced radical chemistry in oxidative hair colouring products. International Journal of Cosmetic Science, 35(1), 41–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Grosvenor, A. J., et al. (2016). Oxidative modification in human hair: The effect of the levels of Cu (II) Ions, UV exposure and hair pigmentation. Photochemistry and Photobiology, 92(1), 144–149.PubMedCrossRefGoogle Scholar
  37. 37.
    Tang, Y., et al. (2016). Trace metal ions in hair from frequent hair dyers in China and the associated effects on photo-oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 156, 35–40.CrossRefGoogle Scholar
  38. 38.
    Stadtman, E. R., & Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry, 266(4), 2005–2008.PubMedGoogle Scholar
  39. 39.
    Linxiang, L., et al. (2007). Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Analytica Chimica Acta, 599, 315–319.CrossRefGoogle Scholar
  40. 40.
    Pande, C. M., & Jachowicz, J. (1993). Hair photodamage – Measurement and prevention. Journal of the Society of Cosmetic Chemists, 44(2), 109–122.Google Scholar
  41. 41.
    Lin, M.-G., et al. (2006). Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy. Journal of Biomedical Optics, 11, 064006.PubMedCrossRefGoogle Scholar
  42. 42.
    Reutsch, S. B., & Kamat, Y. K. (2004). Effects of thermal treatments with a curling iron on hair fiber. Journal of Cosmetic Science, 55, 13–27.Google Scholar
  43. 43.
    Grosvenor, A. J., Morton, J. D., & Dyer, J. M. (2011). Proteomic characterisation of hydrothermal redox damage. Journal of the Science of Food and Agriculture, 91(15), 2806–2813.PubMedCrossRefGoogle Scholar
  44. 44.
    Schwass, D. E., & Finley, J. W. (1984). Heat and alkaline damage to proteins: Racemization and lysinoalanine formation. Journal of Agricultural and Food Chemistry, 32(6), 1377–1382.CrossRefGoogle Scholar
  45. 45.
    Sweetman, B. J. (1967). The hydrothermal degradation of wool keratin. Part I: Chemical changes associated with the treatment of wool keratin with water at 50 – 100°C. Textile Research Journal, 37(10), 834–844.CrossRefGoogle Scholar
  46. 46.
    Brack, N., et al. (1999). Effect of water at elevated temperatures on the wool fibre surface. Surface and Interface Analysis, 27(12), 1050–1054.CrossRefGoogle Scholar
  47. 47.
    Dyer, J. M., et al. (2013). Redox proteomic evaluation of bleaching and alkali damage in human hair. International Journal of Cosmetic Science, 35(6), 555–561.PubMedCrossRefGoogle Scholar
  48. 48.
    Bender, D. A., & Barrett, G. C. (1985). Chemistry and biochemistry of the amino acids (pp. 169–171). London: Chapman & Hall.Google Scholar
  49. 49.
    Stadtman, E. R., & Levine, R. L. (2006). Chemical modification of proteins by reactive oxygen species. In I. S. Dalle-Donne, A. Scaloni, & D. A. Butterfield (Eds.), Redox proteomics – From protein modifications to cellular disfunctions and diseases (pp. 3–23). Hoboken: Wiley.Google Scholar
  50. 50.
    Gill, A. C., et al. (2000). Post-translational hydroxylation at the N-terminus of the prion protein reveals presence of PPII structure in vivo. EMBO Journal, 19(20), 5324–5331.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761–770.PubMedCrossRefGoogle Scholar
  52. 52.
    Goshe, M. B., Chen, Y. H., & Anderson, V. E. (2000). Identification of the sites of hydroxyl radical reaction with peptides by hydrogen/deuterium exchange: Prevalence of reactions with the side chains. Biochemistry, 39, 1761–1770.PubMedCrossRefGoogle Scholar
  53. 53.
    Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316.PubMedCrossRefGoogle Scholar
  54. 54.
    Hearle, J. W. (2000). A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules, 27(2), 123–138.PubMedCrossRefGoogle Scholar
  55. 55.
    Parbhu, A. N., Bryson, W. G., & Lal, R. (1999). Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: Correlative nano-indentation and elasticity measurement with an AFM. Biochemistry, 38(36), 11755–11761.PubMedCrossRefGoogle Scholar
  56. 56.
    Katsumi, A., et al. (2000). Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. Journal of Biological Chemistry, 275(33), 25585–25594.PubMedCrossRefGoogle Scholar
  57. 57.
    Earland, C., & Raven, D. J. (1961). Lanthionine formation in keratin. Nature, 191(4786), 384–384.PubMedCrossRefGoogle Scholar
  58. 58.
    Bessems, G. J., Rennen, H. J., & Hoenders, H. J. (1987). Lanthionine, a protein cross-link in cataractous human lenses. Experimental Eye Research, 44(5), 691–695.PubMedCrossRefGoogle Scholar
  59. 59.
    Garner, M. H., & Spector, A. (1980). Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proceedings of the National Academy of Sciences of the United States of America, 77, 1274–1277.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Davies, M. J., et al. (1999). Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radical Biology and Medicine, 27, 1151–1163.PubMedCrossRefGoogle Scholar
  61. 61.
    Asquith, R. S., & Rivett, D. E. (1971). Studies on the photooxidation of tryptophan. Biochimica et Biophysica Acta, 252(1), 111–116.PubMedCrossRefGoogle Scholar
  62. 62.
    Simat, T. J., & Steinhart, H. (1998). Oxidation of free tryptophan and tryptophan residues in peptides and proteins. Journal of Agricultural and Food Chemistry, 46(2), 490–498.PubMedCrossRefGoogle Scholar
  63. 63.
    Maskos, J., Rush, J. D., & Koppenol, W. H. (1992). The hydroxylation of tryptophan. Archives of Biochemistry and Biophysics, 296(2), 514–520.PubMedCrossRefGoogle Scholar
  64. 64.
    Żegota, H., et al. (2005). o-Tyrosine hydroxylation by OH. radicals.2,3-DOPA and 2,5-DOPA formation in γ-irradiated aqueous solution. Radiation Physics and Chemistry, 72(1), 25–33.CrossRefGoogle Scholar
  65. 65.
    Wei, C., et al. (2007). Luminescence and Raman spectroscopic studies on the damage of tryptophan, histidine and carnosine by singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 189, 39–45.CrossRefGoogle Scholar
  66. 66.
    Sionkowska, A., & Kaminska, A. (1999). Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. International Journal of Biological Macromolecules, 24(4), 337–340.PubMedCrossRefGoogle Scholar
  67. 67.
    Dyer, J. M., et al. (2009). Photoproducts formed in the photoyellowing of collagen in the presence of a fluorescent whitening agent. Photochemistry and Photobiology, 85(6), 1314–1321.PubMedCrossRefGoogle Scholar
  68. 68.
    Stadtman, E. R., & Berlett, B. S. (1999). Fenton chemistry. Amino acid oxidation. Journal of Biological Chemistry, 266, 17201–17211.Google Scholar
  69. 69.
    Holt, L. A., & Milligan, B. (1977). The formation of carbonyl groups during irradiation of wool and its relevance to photoyellowing. Textile Research Journal, 47, 620–624.CrossRefGoogle Scholar
  70. 70.
    Stadtman, E. R. (2006). Protein oxidation and aging. Free Radical Research, 40(12), 1250–1258.PubMedCrossRefGoogle Scholar
  71. 71.
    Scaloni, A. (2006). Mass spectrometry approaches for the molecular characterisation of oxidatively/nitrosatively modified proteins. In I. S. Dalle-Donne, S. Andrea, D. M. Desiderio, & N. M. Nibbering (Eds.), Redox proteomics. Hoboken: Wiley.Google Scholar
  72. 72.
    Dalle-Donne, I., Scaloni, A., & Butterfield, D. A. (Eds.). (2006). Redox proteomics: From protein modifications to cellular dysfunction and diseases (Wiley-Interscience series on mass spectrometry, D. M. N. Desiderio & M. Nico, Eds.). Wiley: Hoboken.Google Scholar
  73. 73.
    Gerhardt, K. E., Wilson, M. I., & Greenberg, B. M. (1999). Tryptophan photolysis leads to a UVB-induced 66 kDa photoproduct of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) in vitro and in vivo. Photochemistry and Photobiology, 70(1), 49–56.Google Scholar
  74. 74.
    Amadò, R., & Neukom, H. (1976). Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochimica et Biophysica Acta, 439(2), 292–301.PubMedCrossRefGoogle Scholar
  75. 75.
    Vazquez, S., et al. (2002). Novel protein modification by kynurenine in human lenses. Journal of Biological Chemistry, 277(7), 4867–4873.PubMedCrossRefGoogle Scholar
  76. 76.
    Thomas, S. N., et al. (2006). MudPIT (multidimensional protein identification technology) for identification of post-translational protein modifications in complex biological mixtures. In I. S. Dalle-Donne, Andrea, & D. A. Butterfield (Eds.), Redox proteomics – From protein modifications to cellular dysfunctions and diseases (pp. 233–252). Hoboken: Wiley.CrossRefGoogle Scholar
  77. 77.
    Domingues, M. R. M., et al. (2003). Identification of oxidation products and free radicals of tryptophan by mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(4), 406–416.PubMedCrossRefGoogle Scholar
  78. 78.
    Abello, N., et al. (2009). Protein tyrosine nitration: Selectivity, physicochemical and biological consequences, denitration and proteomics methods for the identification of tyrosine-nitrated proteins. Journal of Proteome Research, 8(7), 3222–3238.PubMedCrossRefGoogle Scholar
  79. 79.
    Dyer, J. M., et al. (2014). Molecular marker approaches for tracking redox damage and protection in keratins. Journal of Cosmetic Science, 65(1), 25–36.PubMedGoogle Scholar
  80. 80.
    Solazzo, C., et al. (2013). Modeling deamidation in sheep α-keratin peptides and application to archeological wool textiles. Analytical Chemistry, 86(1), 567–575.PubMedCrossRefGoogle Scholar
  81. 81.
    Grosvenor, A. J., Morton, J. D., & Dyer, J. M. (2010). Profiling of residue-level photo-oxidative damage in peptides. Amino Acids, 39(1), 285–296.PubMedCrossRefGoogle Scholar
  82. 82.
    Wiese, S., et al. (2007). Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics, 7(3), 340–350.PubMedCrossRefGoogle Scholar
  83. 83.
    Wu, W. W., et al. (2006). Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. Journal of Proteome Research, 5(3), 651–658.PubMedCrossRefGoogle Scholar
  84. 84.
    Deb-Choudhury, S., et al. (2014). Effect of cooking on meat proteins: Mapping hydrothermal protein modification as a potential indicator of bioavailability. Journal of Agricultural and Food Chemistry, 62(32), 8187–8196.PubMedCrossRefGoogle Scholar
  85. 85.
    Dyer, J. M., et al. (2010). Proteomic evaluation and location of UVB-induced photomodification in wool. Photochemistry and Photobiology B: Biology, 98(2), 118–127.CrossRefGoogle Scholar
  86. 86.
    Solazzo, C., et al. (2013). Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. International Biodeterioration & Biodegradation, 80, 48–59.CrossRefGoogle Scholar
  87. 87.
    Lassé, M., et al. (2015). The impact of pH, salt concentration and heat on digestibility and amino acid modification in egg white protein. Journal of Food Composition and Analysis, 38(0), 42–48.CrossRefGoogle Scholar
  88. 88.
    Chen, X., Chen, Y. H., & Anderson, V. E. (1999). Protein cross-links: Universal isolation and characterization by isotopic derivatization and electrospray ionization mass spectrometry. Analytical Biochemistry, 273(2), 192–203.PubMedCrossRefGoogle Scholar
  89. 89.
    Back, J. W., et al. (2002). Identification of cross-linked peptides for protein interaction studies using mass spectrometry and 18O labeling. Analytical Chemistry, 74(17), 4417–4422.PubMedCrossRefGoogle Scholar
  90. 90.
    Mirza, S. P., Greene, A. S., & Olivier, M. (2008). 18O labeling over a coffee break: A rapid strategy for quantitative proteomics. Journal of Proteome Research, 7(7), 3042–3048.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.AgResearch Ltd.LincolnNew Zealand

Personalised recommendations