Advertisement

Macrofibril Formation

  • Duane P. HarlandEmail author
  • A. John McKinnon
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)

Abstract

Macrofibrils are the main structural component of the hair cortex, and are a composite material in which trichokeratin intermediate filaments (IFs) are arranged as organised arrays embedded in a matrix composed of keratin-associated proteins (KAPs) and keratin head groups. Various architecture of macrofibrils is possible, with many having a central core around which IFs are helically arranged, an organisation most accurately described as a double-twist arrangement. In this chapter we describe the architecture of macrofibrils and then cover their formation, with most of the material focusing on the theory that the initial stages of macrofibril formation are as liquid crystals.

Keywords

Hair follicle Trichokeratin Keratin intermediate filament Intermediate filament polymerization Macrofibril Supramolecular assembly Mesophase 

References

  1. 1.
    Horio, M., & Kondo, T. (1953). Crimping of wool fibers. Textile Research Journal, 23(6), 373–387.CrossRefGoogle Scholar
  2. 2.
    Swift, J. A. (1977). The histology of keratin fibers. In R. S. Asquith (Ed.), Chemistry of natural protein fibers (pp. 81–146). London: Wiley.CrossRefGoogle Scholar
  3. 3.
    Rogers, G. E. (1959). Electron microscopy of wool. Journal of Ultrastructure Research, 2(3), 309–330.CrossRefPubMedGoogle Scholar
  4. 4.
    Harland, D. P., et al. (2011). Arrangement of trichokeratin intermediate filaments and matrix in the cortex of Merino wool. Journal of Structural Biology, 173, 29–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Whiteley, K. J., & Kaplin, I. J. (1977). The comparative arrangement of microfibrils in ortho, meso, and paracortical cells of Merino wool fibres. Journal of the Textile Institute, 68(11), 384–386.CrossRefGoogle Scholar
  6. 6.
    Bryson, W. G., et al. (2009). Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair. Journal of Structural Biology, 166(1), 46–58.CrossRefPubMedGoogle Scholar
  7. 7.
    Harland, D. P., et al. (2014). Three-dimensional architecture of macrofibrils in the human scalp hair cortex. Journal of Structural Biology, 185(3), 397–404.CrossRefPubMedGoogle Scholar
  8. 8.
    Thomas, A., et al. (2012). Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibres of similar diameter. Journal of Agricultural & Food Chemistry, 60(10), 2434–2446.CrossRefGoogle Scholar
  9. 9.
    Woods, J. L., et al. (2011). Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus). Journal of Morphology, 272(1), 34–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Caldwell, J. P., et al. (2005). The three-dimensional arrangement of intermediate filaments in Romney wool cortical cells. Journal of Structural Biology, 151(3), 298–305.CrossRefPubMedGoogle Scholar
  11. 11.
    Neville, A. C. (1993). Biology of fibrous composites: Development beyond the cell membrane (1st ed.). New York: Cambridge University Press. 214.CrossRefGoogle Scholar
  12. 12.
    Harland, D. P., Vernon, J. A., Woods, J. L., Nagase, S., Itou, T., Koike, K., Scobie, D. A., Grosvenor, A. J., Dyer, J. M., & Clerens, S. (2018). Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. The Journal of Experimental Biology , 221(6), jeb172312.CrossRefPubMedGoogle Scholar
  13. 13.
    Rogers, G. E. (1964). Structural and biochemical features of the hair follicle. In W. Montagna & W. C. Lobitz (Eds.), The epidermis (pp. 179–236). New York: Academic.CrossRefGoogle Scholar
  14. 14.
    Orwin, D. F. G., Thomson, R. W., & Flower, N. E. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (2. desmosomes). Journal of Ultrastructure Research, 45, 15–29.CrossRefPubMedGoogle Scholar
  15. 15.
    Roth, S. I., & Helwig, E. B. (1964). The cytology of the cuticle of the cortex, the cortex, and the medulla of the mouse hair. Journal of Ultrastructure Research, 11, 52–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Birbeck, M. S. C., & Mercer, E. H. (1957). The electron microscopy of the human hair follicle. Part1. Introduction and the hair cortex. Journal of Biophysical and Biochemical Cytology, 3, 203–213.CrossRefPubMedGoogle Scholar
  17. 17.
    Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.CrossRefPubMedGoogle Scholar
  18. 18.
    Morioka, K. (2005). Hair follicle, differentiation under the electron microscope – an atlas. Tokyo: Springer. 152.Google Scholar
  19. 19.
    Langbein, L., & Schweizer, J. (2005). Keratins of the human hair follicle. International Review of Cytology, 243, 1–78.CrossRefPubMedGoogle Scholar
  20. 20.
    McKinnon, A. J., Harland, D. P., & Woods, J. L. (2016). Relating self-assembly to protein expression in wool cortical cells. Journal of Textile Engineering, 62(6), 123–128.CrossRefGoogle Scholar
  21. 21.
    Wang, H., et al. (2000). In vitro assembly and structure of trichocyte keratin intermediate filaments: A novel role for stabilization by disulfide bonding. Journal of Cell Biology, 151(7), 1459–1468.CrossRefPubMedGoogle Scholar
  22. 22.
    Paton, L. N. (2005). Proteomic analysis of wool intermediate filament proteins. Christchurch: School of Biological Sciences, University of Canterbury.Google Scholar
  23. 23.
    Jones, L. N., & Pope, F. M. (1985). Isolation of intermediate filament assemblies from human hair follicles. Journal of Cell Biology, 101(4), 1569–1577.CrossRefPubMedGoogle Scholar
  24. 24.
    Matsunaga, R., et al. (2013). Bidirectional binding property of high glycine–tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. Journal of Structural Biology, 183(3), 484–494.CrossRefPubMedGoogle Scholar
  25. 25.
    Fraser, R. D. B., Rogers, G. E., & Parry, D. A. D. (2003). Nucleation and growth of macrofibrils in trichocyte (hard-α) keratins. Journal of Structural Biology, 143, 85–93.CrossRefGoogle Scholar
  26. 26.
    McKinnon, A. J., & Harland, D. P. (2011). A concerted polymerization-mesophase separation model for formation of trichocyte intermediate filaments and macrofibril templates 1: Relating phase separation to structural development. Journal of Structural Biology, 173(2), 229–240.CrossRefPubMedGoogle Scholar
  27. 27.
    Parry, D. A., et al. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.CrossRefPubMedGoogle Scholar
  28. 28.
    Sokolova, A. V., et al. (2006). Monitoring intermediate filament assembly by small-angle X-ray scattering reveals the molecular architecture of assembly intermediates. Proceedings of the National Academy of Science of USA, 103, 16206–16211.CrossRefGoogle Scholar
  29. 29.
    Franke, W. W., Schiller, D. L., & Grund, C. (1982). Protofilamentous and annular structures as intermediates during reconstitution of cytokeratin filaments in vitro. Biology of the Cell, 46, 257–268.Google Scholar
  30. 30.
    Herrmann, H., et al. (2002). Characterisation of early assembly intermediates of recombinant human keratins. Journal of Structural Biology, 137, 82–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Kirmse, R., et al. (2010). Plasticity of intermediate filament subunits. PLoS One, 5(8), e12115.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Portet, S., et al. (2009). Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir, 25(15), 8817–8823.CrossRefPubMedGoogle Scholar
  33. 33.
    Fraser, B. R. D., & Parry, D. A. D. (2003). Macrofibril assembly in trichocyte (hard α-) keratins. Journal of Structural Biology, 142(2), 319–325.CrossRefGoogle Scholar
  34. 34.
    McKinnon, A. J. (2006). The self-assembly of keratin intermediate filaments into macrofibrils: Is this process mediated by a mesophase? Current Applied Physics, 6, 375–378.CrossRefGoogle Scholar
  35. 35.
    McKinnon, A. J., & Harland, D. P. (2010). The role of liquid-crystalline structures in the morphogenesis of animal fibers. International Journal of Trichology, 2(2), 101–103.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lehmann, O. (1889). Über fliessende Krystalle. In Zeitschrift für Physikalische Chemie (p. 462).Google Scholar
  37. 37.
    Friedel, G. (1922). Les états mésomorphes de la matière. Annals of Physics, 9(18), 273–474.CrossRefGoogle Scholar
  38. 38.
    Mitov, M. (2014). Liquid-crystal science from 1888 to 1922: Building a revolution. Chemphyschem, 15(7), 1245–1250.CrossRefPubMedGoogle Scholar
  39. 39.
    Onsager, L. (1949). The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 51(4), 627–659.CrossRefGoogle Scholar
  40. 40.
    Bernal, J. D., & Fankuchen, I. (1941). X-ray and crystallographic studies of plant virus preparations. The Journal of General Physiology, 25(1), 111.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Flory, P. J. (1953). Principles of polymer chemistry (1st ed., p. 688). The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University, Ithaca, United States Cornell University Press.Google Scholar
  42. 42.
    Flory, P. J. (1984). Molecular theory of liquid crystals. Advances in Polymer Science, 59, 1–36.CrossRefGoogle Scholar
  43. 43.
    Flory, P. J. (1956). Phase equilibria in solutions of rod-like particles. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 234(1196), 73.CrossRefGoogle Scholar
  44. 44.
    Flory, P. J., & Frost, R. S. (1978). Statistical thermodynamics of mixtures of rodlike particles. 3. The most probable distribution. Macromolecules, 11(6), 1126–1133.CrossRefGoogle Scholar
  45. 45.
    Brown, A. I., Kreplak, L., & Rutenberg, A. D. (2014). An equilibrium double-twist model for the radial structure of collagen fibrils. Soft Matter, 10(42), 8500–8511.CrossRefPubMedGoogle Scholar
  46. 46.
    Bouligand, Y. (2008). Liquid crystals and biological morphogenesis: Ancient and new questions. Comptes Rendus Chimie, 11(3), 281–296.CrossRefGoogle Scholar
  47. 47.
    Flory, P. J., & Leonard, W. J. (1965). Thermodynamic properties of solutions of helical polypeptides. Journal of the American Chemical Society, 87(10), 2102–2108.CrossRefGoogle Scholar
  48. 48.
    Sato, T., & Teramoto, A. (1996). Concentrated solutions of liquid-crystalline polymers. Advances in Polymer Science, 126, 85–161.CrossRefGoogle Scholar
  49. 49.
    Parry, D. A. D. (1990). Primary and secondary structure of IF protein chains and modes of molecular aggregation. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 175–204). New York: Plenum.CrossRefGoogle Scholar
  50. 50.
    Parry, D. A. D., & Steinert, P. M. (1999). Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Quarterly Reviews of Biophysics, 32(2), 99–187.CrossRefPubMedGoogle Scholar
  51. 51.
    Köster, S., et al. (2015). Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.CrossRefPubMedGoogle Scholar
  52. 52.
    Szeverenyi, I., et al. (2008). The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation, 29(3), 351–360.CrossRefPubMedGoogle Scholar
  53. 53.
    Tobolsky, A. V., & Eisenberg, A. (1962). Transition phenomena in equilibrium polymerization. Journal of Colloid Science, 17(1), 49–65.CrossRefGoogle Scholar
  54. 54.
    Tobolsky, A. V., & Eisenberg, A. (1960). A general treatment of equilibrium polymerization. Journal of the American Chemical Society, 82(2), 289–293.CrossRefGoogle Scholar
  55. 55.
    De Greef, T. F. A., et al. (2009). Supramolecular polymerization. Chemical Reviews, 109(11), 5687–5754.CrossRefPubMedGoogle Scholar
  56. 56.
    Douglas, J. F., Dudowicz, J., & Freed, K. F. (2008). Lattice model of equilibrium polymerization. VII. Understanding the role of “cooperativity” in self-assembly. The Journal of Chemical Physics, 128(22), 224901.CrossRefPubMedGoogle Scholar
  57. 57.
    Tobolsky, A. V., & MacKnight, W. J. (1965). Polymeric sulfur and related polymers. New York/London: Interscience.Google Scholar
  58. 58.
    Ishii, D., et al. (2011). Stepwise characterization of the thermodynamics of trichocyte intermediate filament protein supramolecular assembly. Journal of Molecular Biology, 408(5), 832–838.CrossRefPubMedGoogle Scholar
  59. 59.
    Yu, Z., et al. (2011). Annotations of sheep keratin intermediate filament genes and their patterns of expression. Experimental Dermatology, 20(7), 582–588.CrossRefPubMedGoogle Scholar
  60. 60.
    French, P. W., & Hewish, D. R. (1986). Localization of low-sulfur keratin proteins in the wool follicle using monoclonal antibodies. Journal of Cell Biology, 102(4), 1412–1418.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.AgResearch Ltd.LincolnNew Zealand
  2. 2.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations