Degradation Analysis with Measurement Errors

Conference paper
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

The lifetime information for highly reliable products is usually assessed by a degradation model. When there are measurement errors in monotonic degradation paths, non-monotonic model assumption can lead to contradictions between physical/chemical mechanisms and statistical explanations. To settle the contradiction, this study presents an independent increment degradation-based process that simultaneously considers the unit-to-unit variability, the within-unit variability, and the measurement error in the degradation data. Several case studies show the flexibility and applicability of the proposed models. This paper also uses a separation-of-variables transformation with a quasi-Monte Carlo method to estimate the model parameters. A degradation diagnostic is provided to evaluate the validity of model assumptions.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology (Grant No: MOST-104-2118-M-001-007) of Taiwan, Republic of China. The authors would like to thank Ms. Ya-Shan Cheng for her assistance in the computations.

References

  1. Bagdonavičius, V., & Nikulin, M. S. (2000). Estimation in degradation models with explanatory variables. Lifetime Data Analysis, 7, 85–103.MathSciNetCrossRefMATHGoogle Scholar
  2. Barndorff-Nielsen, O. E., Mikosch, T., & Resnick, S. I. (2001). Lévy Processes: Theory and Applications. Boston: Birkhäuse.CrossRefMATHGoogle Scholar
  3. Cheng, Y. S., & Peng, C. Y. (2012). Integrated degradation models in R using iDEMO. Journal of Statistical Software, 49, 1–22.Google Scholar
  4. Chuang, S. L., Ishibashi, A., Kijima, S., Nakayama, N., Ukita, M., & Taniguchi, S. (1997). Kinetic model for degradation of light-emitting diodes. IEEE Journal of Quantum Electronics, 33, 970–979.CrossRefGoogle Scholar
  5. Di Nardo, E., Nobile, A. G., Pirozzi, E., & Ricciardi, L. M. (2001). A computational approach to first-passage-time problems for Gauss-Markov processes. Advances in Applied Probability, 33, 453–482.MathSciNetCrossRefMATHGoogle Scholar
  6. Doksum, K. A., & Hóyland, A. (1992). Model for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. Technometrics, 34, 74–82.CrossRefMATHGoogle Scholar
  7. Doksum, K. A., & Normand, S. L. T. (1995). Gaussian models for degradation processes-part I: methods for the analysis of biomarker data. Lifetime Data Analysis, 1, 131–144.MathSciNetCrossRefMATHGoogle Scholar
  8. Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall/CRC.CrossRefMATHGoogle Scholar
  9. Fukuda, M. (1991). Reliability and Degradation of Semiconductor Lasers and LEDs. Boston: Artech House.Google Scholar
  10. Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141–150.Google Scholar
  11. Genz, A., & Bretz, F. (2009). Computation of Multivariate Normal and\(t\)Probabilities. Berlin: Springer.Google Scholar
  12. Hamada, M. S., Wilson, A. G., Reese, C. S., & Martz, H. F. (2008). Bayesian Reliability. New York: Springer.CrossRefMATHGoogle Scholar
  13. Hickernell, F. J. (1998). A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67, 299–322.MathSciNetCrossRefMATHGoogle Scholar
  14. Hickernell, F. J. (2002). Obtaining \(O(N^{-2+\epsilon })\) convergence for lattice quadrature Rrules. In K. T. Fang, F. J. Hickernell, & H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000 (pp. 274–289). Berlin: Springer.Google Scholar
  15. Kallen, M. J., & van Noortwijk, J. M. (2005). Optimal maintenance decisions under imperfect inspection. Reliability Engineering and System Safety, 90, 177–185.CrossRefGoogle Scholar
  16. Lawless, J., & Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10, 213–227.MathSciNetCrossRefMATHGoogle Scholar
  17. Lu, C. J., & Meeker, W. Q. (1993). Using degradation measures to estimate a time-to-failure distribution. Technometrics, 35, 161–174.MathSciNetCrossRefMATHGoogle Scholar
  18. Lu, D., Pandey, M. D., & Xie, W. C. (2013). An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements. Journal of Risk and Reliability, 227, 425–433.Google Scholar
  19. Meeker, W. Q., & Escobar, L. A. (1998). Statistical Methods for Reliability Data. New York: Wiley.MATHGoogle Scholar
  20. Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. New York: Wiley.CrossRefMATHGoogle Scholar
  21. Padgett, W. J., & Tomlinson, M. A. (2004). Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Analysis, 10, 191–206.Google Scholar
  22. Park, C., & Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma process. Lifetime Data Analysis, 11, 511–527.MathSciNetCrossRefMATHGoogle Scholar
  23. Peng, C. Y., & Tseng, S. T. (2013). Statistical lifetime inference with skew-Wiener linear degradation models. IEEE Transactions on Reliability, 62, 338–350.Google Scholar
  24. Peng, C. Y. (2015a). Inverse Gaussian processes with random effects and explanatory variables for degradation data. Technometrics, 57, 100–111.MathSciNetCrossRefGoogle Scholar
  25. Peng, C. Y. (2015b). Optimal classification policy and comparisons for highly reliable products. Sankhyā B, 77, 321–358.MathSciNetCrossRefMATHGoogle Scholar
  26. Peng, C. Y. & Cheng, Y. S. (2016), Threshold degradation in R using iDEMO. In M. Dehmer, Y. Shi, & F. Emmert-Streib (Eds.) Computational Network Analysis with R: Applications in Biology, Medicine and Chemistry (pp. 83–124). Germany: Wiley-VCH Verlag GmbH & Co.  https://doi.org/10.1002/9783527694365.ch4.
  27. Peng, C. Y., & Tseng, S. T. (2009). Misspecification analysis of linear degradation models. IEEE Transactions on Reliability, 58, 444–455.CrossRefGoogle Scholar
  28. Richtmyer, R. D. (1951). The evaluation of definite integrals, and a quasi-Monte-Carlo method based on the properties of algebraic numbers. Technical Report LA-1342, Los Alamos Scientific Laboratory.Google Scholar
  29. Shiomi, H., & Yanagisawa, T. (1979). On distribution parameter during accelerated life test for a carbon film resistor. Bulletin of the Electrotechnical Laboratory, 43, 330–345.Google Scholar
  30. Si, X. S., Wang, W. B., Hu, C. H., Zhou, D. H., & Pecht, M. G. (2012). Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Transactions on Reliability, 61, 50–67.CrossRefGoogle Scholar
  31. Singpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10, 86–103.CrossRefMATHGoogle Scholar
  32. Singpurwalla, N. D. (1997), Gamma processes and their generalizations: an overview. In R. Cook, M. Mendel, & H. Vrijling, (Eds.), Engineering Probabilistic Design and Maintenance for Flood Protection (pp. 67–73). Dordrecht: Kluwer Academic.Google Scholar
  33. Sloan, I. H., & Joe, S. (1994). Lattice Methods for Multiple Integration. Oxford: Oxford University Press.MATHGoogle Scholar
  34. Suzuki, K., Maki, K., & Yokogawa, S. (1993). An analysis of degradation data of a carbon film and the properties of the estimators. In K. Matusita, M. L. Puri, & T. Hayakawa, (Eds.), Proceedings of the Third Pacific Area Statistical Conference (pp. 501–511). Zeist: The Netherlands.Google Scholar
  35. Tsai, C. C., Tseng, S. T., & Balakrishnan, N. (2012). Optimal design for gamma degradation processes with random effects. IEEE Transactions on Reliability, 61, 604–613.CrossRefGoogle Scholar
  36. van Noortwijk, J. M. (2009). A survey of the application of gamma processes in maintenance. Reliability Engineering and System Safety, 94, 2–21.CrossRefGoogle Scholar
  37. Wang, X., & Xu, D. (2010). An inverse Gaussian process model for degradation data. Technometrics, 52, 188–197.Google Scholar
  38. Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Analysis, 1, 307–319.CrossRefMATHGoogle Scholar
  39. Whitmore, G. A., & Schenkelberg, F. (1997). Modeling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Analysis, 3, 27–45.Google Scholar
  40. Yanagisawa, T., & Kojima, T. (2005). Long-term accelerated current operation of white light-emitting diodes. Journal of Luminescence, 114, 39–42.CrossRefGoogle Scholar
  41. Ye, Z. S., & Chen, N. (2014). The inverse Gaussian process as a degradation model. Technometrics, 56, 302–311.Google Scholar
  42. Zhou, Y., Sun, Y., Mathew, J., Wolff, R., & Ma, L. (2011). Latent degradation indicators estimation and prediction: a Monte Carlo approach. Mechanical Systems and Signal Processing, 25, 222–236.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Statistical ScienceAcademia SinicaTaipeiTaiwan

Personalised recommendations