COPD: Hereditary (A1-AT) and Non-hereditary—What Are the Roles of Genetic Factors in the Pathogenesis of COPD?

  • Nobuyuki Horita
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)


Although smoking is a considerable risk factor for COPD development, genetic susceptibility is believed to play a key role in the development of COPD. This is because approximately 15% of the smoking population eventually suffer from this disease, while the others sustain normal lungs despite their smoking habit. A well-known causal gene of COPD is the serine protease inhibitor A1 (SERPINA1) gene, which causes hereditary severe α1-antitrypsin (A1-AT) deficiency. After SERPINA1 was identified as causal gene for A1-AT deficiency leading to COPD, many other genes that alter the risk of non-hereditary COPD were identified. Especially, the recent development of the genome-wide association study (GWAS) is a powerful tool to identify hypothesis-free genes. Even though recent studies have revealed more than 100 genes that affect the risk of non-hereditary COPD, the impact of each gene is not very strong, and they usually change the risk of COPD with a risk ratio of between 0.7 and 1.5. Thus, identified genes can explain only a small part of the etiology of COPD. In this chapter, we will review the roles of genetic factors in the pathogenesis of hereditary and non-hereditary COPD.


Chronic obstructive pulmonary disease Gene Meta-analysis Genome-wide association study 


  1. 1.
    Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 Report: GOLD executive summary. Eur Respir J. 2017;49(3)Google Scholar
  2. 2.
    Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370(9589):765–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Siafakas NM, Vermeire P, Pride NB, et al. Optimal assessment and management of chronic obstructive pulmonary-disease (COPD). Eur Respir J. 1995;8(8):1398–420.CrossRefPubMedGoogle Scholar
  4. 4.
    Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Visscher PM, Brown MA, McCarthy MI, Yang J. Five Years of GWAS Discovery. Am J Hum Genet. 2012;90(1):7–24.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bosse Y. Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis. 2012;7:607–31.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berndt A, Leme AS, Shapiro SD. Emerging genetics of COPD. EMBO Mol Med. 2012;4(11):1144–55.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kruglyak L, Daly MJ, ReeveDaly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996;58(6):1347–63.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gu C, Province M, Todorov A, Rao DC. Meta-analysis methodology for combining non-parametric sibpair linkage results: genetic homogeneity and identical markers. Genet Epidemiol. 1998;15(6):609–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet. 2000;66(6):1945–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev. 2002;11(6):505–12.PubMedGoogle Scholar
  12. 12.
    Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86(1):6–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu ZL, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37:W600–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Holme J, Stockley RA. Radiologic and clinical features of COPD patients with discordant pulmonary physiology - lessons from alpha(1)-antitrypsin deficiency. Chest. 2007;132(3):909–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M. Glutathione S-transferase P1 and lung function in patients with alpha(1)-antitrypsin deficiency and COPD. Chest. 2005;127(5):1537–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Wood AM, de Pablo P, Buckley CD, Ahmad A, Stockley RA. Smoke exposure as a determinant of autoantibody titre in alpha(1)-antitrypsin deficiency and COPD. Eur Respir J. 2011;37(1):32–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med. 2002;136(4):270–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Demeo DL, Mariani TJ, Lange C, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu G, Warren L, Aponte J, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. Am J Respir Crit Care Med. 2007;176(2):167–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Fujimoto K, Ikeda S, Arai T, et al. Polymorphism of SERPINE2 gene is associated with pulmonary emphysema in consecutive autopsy cases. BMC Med Genet. 2010;11:159.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sakao S, Tatsumi K, Igari H, Shino Y, Shirasawa H, Kuriyama T. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):420–2.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhan P, Wang J, Wei SZ, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians: meta-analysis of data for 6,118 subjects. Mol Biol Rep. 2011;38(1):219–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Celedon JC, Lange C, Raby BA, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet. 2004;13(15):1649–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu L, Chau J, Young RP, et al. Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax. 2004;59(2):126–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vibhuti A, Arif E, Deepak D, Singh B, Qadar Pasha MA. Genetic polymorphisms of GSTP1 and mEPHX correlate with oxidative stress markers and lung function in COPD. Biochem Biophys Res Commun. 2007;359(1):136–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009;180(7):618–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheng SL, Yu CJ, Chen CJ, Yang PC. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23(6):818–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6(8)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200–2.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85(4):493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Int J Clin Chem. 2006;372(1-2):33–42.Google Scholar
  33. 33.
    Horita N, Miyazawa N, Tomaru K, Inoue M, Ishigatsubo Y, Kaneko T. Vitamin D binding protein genotype variants and risk of chronic obstructive pulmonary disease: a meta-analysis. Respirology. 2015;20(2):219–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhou H, Wu Y, Jin Y, et al. Genetic polymorphism of matrix metalloproteinase family and chronic obstructive pulmonary disease susceptibility: a meta-analysis. Sci Rep. 2013;3:2818.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Caporaso N, Gu FY, Chatterjee N, et al. Genome-Wide and Candidate Gene Association study of cigarette smoking behaviors. PLoS One. 2009;4(2):e4653.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li MD, Ma JZ, Beuten J. Progress in searching for susceptibility loci and genes for smoking-related behaviour. Clin Genet. 2004;66(5):382–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441–7.CrossRefGoogle Scholar
  38. 38.
    Barnes PJ. Future advances in COPD therapy. Respiration. 2001;68(5):441–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Cazzola M, Hanania NA, MacNee W, Rudell K, Hackford C, Tamimi N. A review of the most common patient-reported outcomes in COPD - revisiting current knowledge and estimating future challenges. Int J Chron Obstruct Pulmon Dis. 2015;10:725–38.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Konigshoff M, Kneidinger N, Eickelberg O. TGF-beta signalling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimens. Swiss Med Wkly. 2009;139(39-40):554–63.PubMedGoogle Scholar
  41. 41.
    Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nobuyuki Horita
    • 1
  1. 1.Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan

Personalised recommendations