Advertisement

Genetic Factors in Sleep Disorders: What Are the Roles of Genetic Factors in the Pathogenesis of Sleep Disorders?

  • Kiminobu Tanizawa
  • Kazuo Chin
Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

Most normal sleep traits and sleep disorders have a familial aggregation, suggesting significant effects of genetic factors. Obstructive sleep apnea (OSA) is a common and complex sleep disorder and has heritability. A recent genome-wide association study (GWAS) identified some genetic risks for OSA with genome-wide levels of significance for the first time. Congenital central hypoventilation syndrome has causative mutations in the paired-like homeobox 2B (PHOX2B) gene, and its phenotypes are associated with PHOX2B genotypes. GWASs have revealed several genetic variances for restless legs syndrome (RLS), whereas these variances have left most of the heritability in RLS unexplained. Narcolepsy is strongly associated with HLA DQ-B1*06:02, and the results of GWASs indicate an autoimmune pathogenesis of narcolepsy. Insomnia has significant heritability, and findings of GWASs have suggested common genetic predispositions with psychiatric disorders and sleep reactivity. Familial fatal insomnia is an autosomal-dominant genetic disorder caused by a mutation in the prion protein (PRNP) gene. Although advances in genetics have resulted in identification of genetic causes of some sleep disorders, further studies are required to elucidate the cellular and molecular mechanisms from genetic risks to clinical manifestations.

Keywords

SNP GWAS Sleep apnea Narcolepsy Restless legs syndrome 

References

  1. 1.
    Luyster FS, Strollo PJ Jr, Zee PC, Walsh JK, Boards of Directors of the American Academy of Sleep Medicine and the Sleep Research Society. Sleep: a health imperative. Sleep. 2012;35:727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alexander M, Ray MA, Hebert JR, Youngstedt SD, Zhang H, Steck SE, et al. The National Veteran Sleep Disorder Study: descriptive epidemiology and secular trends, 2000–2010. Sleep. 2016;39:1399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Parish JM. Genetic and immunologic aspects of sleep and sleep disorders. Chest. 2013;143:1489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146:1387–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Gehrman PR, Keenan BT, Byrne EM, Pack AI. Genetics of sleep disorders. Psychiatr Clin North Am. 2015;38:667–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Andretic R, Franken P, Tafti M. Genetics of sleep. Annu Rev Genet. 2008;42:361–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Partinen M, Kaprio J, Koskenvuo M, Putkonen P, Langinvainio H. Genetic and environmental determination of human sleep. Sleep. 1983;6:179–85.PubMedCrossRefGoogle Scholar
  8. 8.
    De Gennaro L, Marzano C, Fratello F, Moroni F, Pellicciari MC, Ferlazzo F, et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol. 2008;64:455–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Nixon GM, Brouillette RT. Sleep and breathing in Prader-Willi syndrome. Pediatr Pulmonol. 2002;34:209–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuno N, Besset A, Ritchie K. Sleep and depression. J Clin Psychiatry. 2005;66:1254–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Alcantara C, Biggs ML, Davidson KW, Delaney JA, Jackson CL, Zee PC, et al. Sleep disturbances and depression in the multi-ethnic study of atherosclerosis. Sleep. 2016;39:915–25.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ. 2009;108:246–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177:1006–14.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nakayama-Ashida Y, Takegami M, Chin K, Sumi K, Nakamura T, Takahashi K, et al. Sleep-disordered breathing in the usual lifestyle setting as detected with home monitoring in a population of working men in Japan. Sleep. 2008;31:419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chin K, Oga T, Takahashi K, Takegami M, Nakayama-Ashida Y, Wakamura T, et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep. 2010;33:89–95.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Young T, Blustein J, Finn L, Palta M. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep. 1997;20:608–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med. 1999;340:847–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165:1217–39.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Quan SF, Wright R, Baldwin CM, Kaemingk KL, Goodwin JL, Kuo TF, et al. Obstructive sleep apnea-hypopnea and neurocognitive functioning in the Sleep Heart Health Study. Sleep Med. 2006;7:498–507.PubMedCrossRefGoogle Scholar
  20. 20.
    Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Yeboah J, Redline S, Johnson C, Tracy R, Ouyang P, Blumenthal RS, et al. Association between sleep apnea, snoring, incident cardiovascular events and all-cause mortality in an adult population: MESA. Atherosclerosis. 2011;219:963–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163:19–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110:364–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353:2034–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep. 2009;32:447–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA. 2003;290(14):1906.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiong L, Catoire H, Dion P, Gaspar C, Lafreniere RG, Girard SL, et al. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels. Hum Mol Genet. 2009;18:1065–74.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Redline S, Tishler PV. The genetics of sleep apnea. Sleep Med Rev. 2000;4:583–602.PubMedCrossRefGoogle Scholar
  29. 29.
    Redline S, Tosteson T, Tishler PV, Carskadon MA, Millman RP. Studies in the genetics of obstructive sleep apnea. Familial aggregation of symptoms associated with sleep-related breathing disturbances. Am Rev Respir Dis. 1992;145:440–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Redline S, Tishler PV, Tosteson TD, Williamson J, Kump K, Browner I, et al. The familial aggregation of obstructive sleep apnea. Am J Respir Crit Care Med. 1995;151:682–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27:325–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Silventoinen K, Kaprio J. Genetics of tracking of body mass index from birth to late middle age: evidence from twin and family studies. Obes Facts. 2009;2:196–202.PubMedCrossRefGoogle Scholar
  33. 33.
    Redline S, Tishler PV, Schluchter M, Aylor J, Clark K, Graham G. Risk factors for sleep-disordered breathing in children. Associations with obesity, race, and respiratory problems. Am J Respir Crit Care Med. 1999;159:1527–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Mathur R, Douglas NJ. Family studies in patients with the sleep apnea-hypopnea syndrome. Ann Intern Med. 1995;122:174–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Palmer LJ, Buxbaum SG, Larkin EK, Patel SR, Elston RC, Tishler PV, et al. Whole genome scan for obstructive sleep apnea and obesity in African-American families. Am J Respir Crit Care Med. 2004;169:1314–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Palmer LJ, Buxbaum SG, Larkin E, Patel SR, Elston RC, Tishler PV, et al. A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet. 2003;72:340–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Patel SR, Frame JM, Larkin EK, Redline S. Heritability of upper airway dimensions derived using acoustic pharyngometry. Eur Respir J. 2008;32:1304–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    de Paula LK, Alvim RO, Pedrosa RP, Horimoto AR, Krieger JE, Oliveira CM, et al. Heritability of OSA in a rural population. Chest. 2016;149:92–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Dudley KA, Patel SR. Disparities and genetic risk factors in obstructive sleep apnea. Sleep Med. 2016;18:96–102.PubMedCrossRefGoogle Scholar
  40. 40.
    Winkelmann J, Schormair B, Xiong L, Dion PA, Rye DB, Rouleau GA. Genetics of restless legs syndrome. Sleep Med. 2017;31:18–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Cade BE, Chen H, Stilp AM, Gleason KJ, Sofer T, Ancoli-Israel S, et al. Genetic associations with obstructive sleep apnea traits in Hispanic/Latino Americans. Am J Respir Crit Care Med. 2016;194:886–97.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Varvarigou V, Dahabreh IJ, Malhotra A, Kales SN. A review of genetic association studies of obstructive sleep apnea: field synopsis and meta-analysis. Sleep. 2011;34:1461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Xu H, Guan J, Yi H, Yin S. A systematic review and meta-analysis of the association between serotonergic gene polymorphisms and obstructive sleep apnea syndrome. PLoS One. 2014;9:e86460.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Qin B, Sun Z, Liang Y, Yang Z, Zhong R. The association of 5-HT2A, 5-HTT, and LEPR polymorphisms with obstructive sleep apnea syndrome: a systematic review and meta-analysis. PLoS One. 2014;9:e95856.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sun J, Hu J, Tu C, Zhong A, Xu H. Obstructive sleep apnea susceptibility genes in Chinese population: a field synopsis and meta-analysis of genetic association studies. PLoS One. 2015;10:e0135942.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lv D, Tan L, Wu Y, Cao C, Deng Z. Leptin and leptin receptor gene polymorphisms in obstructive sleep apnea: a HuGE review and meta-analysis. Sleep Breath. 2015;19:1073–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Patel SR, Goodloe R, De G, Kowgier M, Weng J, Buxbaum SG, et al. Association of genetic loci with sleep apnea in European Americans and African-Americans: the Candidate Gene Association Resource (CARe). PLoS One. 2012;7:e48836.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sands-Lincoln M, Grandner M, Whinnery J, Keenan BT, Jackson N, Gurubhagavatula I. The association between obstructive sleep apnea and hypertension by race/ethnicity in a nationally representative sample. J Clin Hypertens (Greenwich). 2013;15:593–9.CrossRefGoogle Scholar
  49. 49.
    Ramos AR, Guilliam D, Dib SI, Koch S. Race/ethnic differences in obstructive sleep apnea risk in patients with acute ischemic strokes in south Florida. Sleep Breath. 2014;18:165–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension. Circ Res. 2015;116:937–59.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Lin L, Finn L, Zhang J, Young T, Mignot E. Angiotensin-converting enzyme, sleep-disordered breathing, and hypertension. Am J Respir Crit Care Med. 2004;170:1349–53.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Patel SR, Larkin EK, Mignot E, Lin L, Redline S. The association of angiotensin converting enzyme (ACE) polymorphisms with sleep apnea and hypertension. Sleep. 2007;30:531–3.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Edwards BA, Eckert DJ, McSharry DG, Sands SA, Desai A, Kehlmann G, et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2014;190:1293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Keens TG, Loghmanee DA, Trang H, et al. An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med. 2010;181:626–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Ramanantsoa N, Gallego J. Congenital central hypoventilation syndrome. Respir Physiol Neurobiol. 2013;189:272–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Moreira TS, Takakura AC, Czeisler C, Otero JJ. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J Neurophysiol. 2016;116:742–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33:459–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME, et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A. 2003;123A:267–78.PubMedCrossRefGoogle Scholar
  59. 59.
    Trochet D, O’Brien LM, Gozal D, Trang H, Nordenskjold A, Laudier B, et al. PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet. 2005;76:421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Berry-Kravis EM, Zhou L, Rand CM, Weese-Mayer DE. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med. 2006;174:1139–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Trochet D, Hong SJ, Lim JK, Brunet JF, Munnich A, Kim KS, et al. Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Hum Mol Genet. 2005;14:3697–708.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Matera I, Bachetti T, Puppo F, Di Duca M, Morandi F, Casiraghi GM, et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet. 2004;41:373–80.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sasaki A, Kanai M, Kijima K, Akaba K, Hashimoto M, Hasegawa H, et al. Molecular analysis of congenital central hypoventilation syndrome. Hum Genet. 2003;114:22–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Devriendt K, Fryns JP, Naulaers G, Devlieger H, Alliet P. Neuroblastoma in a mother and congenital central hypoventilation in her daughter: variable expression of the same genetic disorder? Am J Med Genet. 2000;90:430–1.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Weese-Mayer DE, Silvestri JM, Marazita ML, Hoo JJ. Congenital central hypoventilation syndrome: inheritance and relation to sudden infant death syndrome. Am J Med Genet. 1993;47:360–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Goridis C, Brunet JF. Central chemoreception: lessons from mouse and human genetics. Respir Physiol Neurobiol. 2010;173:312–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol. 2010;173:244–55.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985). 2010;108:995–1002.CrossRefGoogle Scholar
  69. 69.
    Bachetti T, Matera I, Borghini S, Di Duca M, Ravazzolo R, Ceccherini I. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet. 2005;14:1815–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Wu HT, Su YN, Hung CC, Hsieh WS, Wu KJ. Interaction between PHOX2B and CREBBP mediates synergistic activation: mechanistic implications of PHOX2B mutants. Hum Mutat. 2009;30:655–60.PubMedCrossRefGoogle Scholar
  71. 71.
    Ikeda K, Takahashi M, Sato S, Igarashi H, Ishizuka T, Yawo H, et al. A Phox2b BAC transgenic rat line useful for understanding respiratory rhythm generator neural circuitry. PLoS One. 2015;10:e0132475.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ruffault PL, D’Autreaux F, Hayes JA, Nomaksteinsky M, Autran S, Fujiyama T, et al. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO(2). elife. 2015;4.  https://doi.org/10.7554/eLife.07051.
  73. 73.
    Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A. 2008;105:1067–72.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, et al. Breathing without CO(2) chemosensitivity in conditional Phox2b mutants. J Neurosci. 2011;31:12880–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia Borreguero D, Winkelmann J, Allen RP. Introduction: towards a better understanding of the science of RLS/WED. Sleep Med. 2017;31:1–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—history, rationale, description, and significance. Sleep Med. 2014;15:860–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Allen RP, Stillman P, Myers AJ. Physician-diagnosed restless legs syndrome in a large sample of primary medical care patients in western Europe: Prevalence and characteristics. Sleep Med. 2010;11:31–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Allen RP, Bharmal M, Calloway M. Prevalence and disease burden of primary restless legs syndrome: results of a general population survey in the United States. Mov Disord. 2011;26:114–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Xiong L, Jang K, Montplaisir J, Levchenko A, Thibodeau P, Gaspar C, et al. Canadian restless legs syndrome twin study. Neurology. 2007;68:1631–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Lazzarini A, Walters AS, Hickey K, Coccagna G, Lugaresi E, Ehrenberg BL, et al. Studies of penetrance and anticipation in five autosomal-dominant restless legs syndrome pedigrees. Mov Disord. 1999;14:111–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Winkelmann J, Muller-Myhsok B, Wittchen HU, Hock B, Prager M, Pfister H, et al. Complex segregation analysis of restless legs syndrome provides evidence for an autosomal dominant mode of inheritance in early age at onset families. Ann Neurol. 2002;52:297–302.PubMedCrossRefGoogle Scholar
  82. 82.
    Desautels A, Turecki G, Montplaisir J, Sequeira A, Verner A, Rouleau GA. Identification of a major susceptibility locus for restless legs syndrome on chromosome 12q. Am J Hum Genet. 2001;69:1266–70.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bonati MT, Ferini-Strambi L, Aridon P, Oldani A, Zucconi M, Casari G. Autosomal dominant restless legs syndrome maps on chromosome 14q. Brain. 2003;126:1485–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Winkelmann J, Lichtner P, Schormair B, Uhr M, Hauk S, Stiasny-Kolster K, et al. Variants in the neuronal nitric oxide synthase (nNOS, NOS1) gene are associated with restless legs syndrome. Mov Disord. 2008;23:350–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Schormair B, Kemlink D, Roeske D, Eckstein G, Xiong L, Lichtner P, et al. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet. 2008;40(8):946.PubMedCrossRefGoogle Scholar
  86. 86.
    Mercader N, Leonardo E, Azpiazu N, Serrano A, Morata G, Martinez C, et al. Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature. 1999;402:425–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Dasen JS, Tice BC, Brenner-Morton S, Jessell TM. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell. 2005;123:477–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Maeda R, Mood K, Jones TL, Aruga J, Buchberg AM, Daar IO. Xmeis1, a protooncogene involved in specifying neural crest cell fate in Xenopus embryos. Oncogene. 2001;20:1329–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Dinev D, Jordan BW, Neufeld B, Lee JD, Lindemann D, Rapp UR, et al. Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep. 2001;2:829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34:535–49.PubMedCrossRefGoogle Scholar
  91. 91.
    Uetani N, Chagnon MJ, Kennedy TE, Iwakura Y, Tremblay ML. Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta. J Neurosci. 2006;26:5872–80.PubMedCrossRefGoogle Scholar
  92. 92.
    Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39:1000–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Winkelmann J, Czamara D, Schormair B, Knauf F, Schulte EC, Trenkwalder C, et al. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet. 2011;7:e1002171.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Stefansson H, Rye DB, Hicks A, Petursson H, Ingason A, Thorgeirsson TE, et al. A genetic risk factor for periodic limb movements in sleep. N Engl J Med. 2007;357:639–47.PubMedCrossRefGoogle Scholar
  95. 95.
    Earley CJ, Connor J, Garcia-Borreguero D, Jenner P, Winkelman J, Zee PC, et al. Altered brain iron homeostasis and dopaminergic function in Restless Legs Syndrome (Willis-Ekbom Disease). Sleep Med. 2014;15:1288–301.PubMedCrossRefGoogle Scholar
  96. 96.
    Oexle K, Ried JS, Hicks AA, Tanaka T, Hayward C, Bruegel M, et al. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum Mol Genet. 2011;20:1042–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Oexle K, Schormair B, Ried JS, Czamara D, Heim K, Frauscher B, et al. Dilution of candidates: the case of iron-related genes in restless legs syndrome. Eur J Hum Genet. 2013;21(4):410.PubMedCrossRefGoogle Scholar
  98. 98.
    Moore H IV, Winkelmann J, Lin L, Finn L, Peppard P, Mignot E. Periodic leg movements during sleep are associated with polymorphisms in BTBD9, TOX3/BC034767, MEIS1, MAP2K5/SKOR1, and PTPRD. Sleep. 2014;37:1535–42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Winkelman JW, Blackwell T, Stone K, Ancoli-Israel S, Tranah GJ, Redline S, et al. Genetic associations of periodic limb movements of sleep in the elderly for the MrOS sleep study. Sleep Med. 2015;16:1360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Schulte EC, Kousi M, Tan PL, Tilch E, Knauf F, Lichtner P, et al. Targeted resequencing and systematic in vivo functional testing identifies rare variants in MEIS1 as significant contributors to restless legs syndrome. Am J Hum Genet. 2014;95:85–95.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Weissbach A, Siegesmund K, Bruggemann N, Schmidt A, Kasten M, Pichler I, et al. Exome sequencing in a family with restless legs syndrome. Mov Disord. 2012;27:1686–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Scammell TE. Narcolepsy. N Engl J Med. 2015;373:2654–62.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Longstreth WT Jr, Koepsell TD, Ton TG, Hendrickson AF, van Belle G. The epidemiology of narcolepsy. Sleep. 2007;30:13–26.PubMedCrossRefGoogle Scholar
  105. 105.
    Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50:S16–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Mignot E. Sleep, sleep disorders and hypocretin (orexin). Sleep Med. 2004;5(Suppl 1):S2–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Chabas D, Taheri S, Renier C, Mignot E. The genetics of narcolepsy. Annu Rev Genomics Hum Genet. 2003;4:459–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Rogers AE, Meehan J, Guilleminault C, Grumet FC, Mignot E. HLA DR15 (DR2) and DQB1*0602 typing studies in 188 narcoleptic patients with cataplexy. Neurology. 1997;48(6):1550.PubMedCrossRefGoogle Scholar
  111. 111.
    Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2014;37:19–25.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pelin Z, Guilleminault C, Risch N, Grumet FC, Mignot E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens. 1998;51:96–100.PubMedCrossRefGoogle Scholar
  113. 113.
    Hong SC, Lin L, Lo B, Jeong JH, Shin YK, Kim SY, et al. DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Hum Immunol. 2007;68:59–68.PubMedCrossRefGoogle Scholar
  114. 114.
    Ollila HM, Ravel JM, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96:136–46.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mignot E, Lin L, Rogers W, Honda Y, Qiu X, Lin X, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet. 2001;68:686–99.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J, Kawashima M, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet. 2009;41:708–11.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CE, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet. 2010;42(9):786.PubMedCrossRefGoogle Scholar
  118. 118.
    Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9:e1003880.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Faraco J, Lin L, Kornum BR, Kenny EE, Trynka G, Einen M, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 2013;9:e1003270.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kornum BR, Kawashima M, Faraco J, Lin L, Rico TJ, Hesselson S, et al. Common variants in P2RY11 are associated with narcolepsy. Nat Genet. 2011;43:66–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Miyagawa T, Kawashima M, Nishida N, Ohashi J, Kimura R, Fujimoto A, et al. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet. 2008;40:1324–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Han F, Lin L, Warby SC, Faraco J, Li J, Dong SX, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol. 2011;70:410–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Aran A, Lin L, Nevsimalova S, Plazzi G, Hong SC, Weiner K, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–83.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One. 2012;7:e33536.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Partinen M, Saarenpaa-Heikkila O, Ilveskoski I, Hublin C, Linna M, Olsen P, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One. 2012;7:e33723.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Donadio V, Liguori R, Vandi S, Pizza F, Dauvilliers Y, Leta V, et al. Lower wake resting sympathetic and cardiovascular activities in narcolepsy with cataplexy. Neurology. 2014;83:1080–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Mignot EJ. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics. 2012;9:739–52.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mahlios J, De la Herran-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol. 2013;23:767–73.PubMedCrossRefGoogle Scholar
  129. 129.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  130. 130.
    Morin CM. Epidemiology of insomnia. Sleep Med Clin. 2013;8:281–97.CrossRefGoogle Scholar
  131. 131.
    Lind MJ, Gehrman PR. Genetic pathwaysto insomnia. Brain Sci. 2016;6.  https://doi.org/10.3390/brainsci6040064.
  132. 132.
    Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6:97–111.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3:S7–10.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Heath AC, Kendler KS, Eaves LJ, Martin NG. Evidence for genetic influences on sleep disturbance and sleep pattern in twins. Sleep. 1990;13:318–35.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Beaulieu-Bonneau S, LeBlanc M, Merette C, Dauvilliers Y, Morin CM. Family history of insomnia in a population-based sample. Sleep. 2007;30:1739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    McCarren M, Goldberg J, Ramakrishnan V, Fabsitz R. Insomnia in Vietnam era veteran twins: influence of genes and combat experience. Sleep. 1994;17:456–61.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Lind MJ, Aggen SH, Kirkpatrick RM, Kendler KS, Amstadter AB. A longitudinal twin study of insomnia symptoms in adults. Sleep. 2015;38:1423–30.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Barclay NL, Gehrman PR, Gregory AM, Eaves LJ, Silberg JL. The heritability of insomnia progression during childhood/adolescence: results from a longitudinal twin study. Sleep. 2015;38:109–18.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Li J, Huang C, Lan Y, Wang Y. A cross-sectional study on the relationships among the polymorphism of period2 gene, work stress, and insomnia. Sleep Breath. 2015;19:1399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Brower KJ, Wojnar M, Sliwerska E, Armitage R, Burmeister M. PER3 polymorphism and insomnia severity in alcohol dependence. Sleep. 2012;35:571–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Brummett BH, Krystal AD, Ashley-Koch A, Kuhn CM, Zuchner S, Siegler IC, et al. Sleep quality varies as a function of 5-HTTLPR genotype and stress. Psychosom Med. 2007;69:621–4.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bouvette-Turcot AA, Pluess M, Bernier A, Pennestri MH, Levitan R, Sokolowski MB, et al. Effects of genotype and sleep on temperament. Pediatrics. 2015;136:e914–21.PubMedCrossRefGoogle Scholar
  143. 143.
    Harvey CJ, Gehrman P, Espie CA. Who is predisposed to insomnia: a review of familial aggregation, stress-reactivity, personality and coping style. Sleep Med Rev. 2014;18:237–47.PubMedCrossRefGoogle Scholar
  144. 144.
    Jawinski P, Tegelkamp S, Sander C, Hantzsch M, Huang J, Mauche N, et al. Time to wake up: no impact of COMT Val158Met gene variation on circadian preferences, arousal regulation and sleep. Chronobiol Int. 2016;33:893–905.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Wang CC, Lung FW. The role of PGC-1 and Apoepsilon4 in insomnia. Psychiatr Genet. 2012;22:82–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Ziv-Gal A, Flaws JA, Mahoney MM, Miller SR, Zacur HA, Gallicchio L. Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Med. 2013;14:883–7.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ban HJ, Kim SC, Seo J, Kang HB, Choi JK. Genetic and metabolic characterization of insomnia. PLoS One. 2011;6:e18455.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Byrne EM, Gehrman PR, Medland SE, Nyholt DR, Heath AC, Madden PA, et al. A genome-wide association study of sleep habits and insomnia. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:439–51.PubMedCrossRefGoogle Scholar
  149. 149.
    Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM. Replication of Genome-Wide Association Studies (GWAS) loci for sleep in the British G1219 cohort. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:431–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Spada J, Scholz M, Kirsten H, Hensch T, Horn K, Jawinski P, et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J Sleep Res. 2016;25:690–701.PubMedCrossRefGoogle Scholar
  151. 151.
    Amin N, Allebrandt KV, van der Spek A, Muller-Myhsok B, Hek K, Teder-Laving M, et al. Genetic variants in RBFOX3 are associated with sleep latency. Eur J Hum Genet. 2016;24:1488–95.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gressier F, Calati R, Balestri M, Marsano A, Alberti S, Antypa N, et al. The 5-HTTLPR polymorphism and posttraumatic stress disorder: a meta-analysis. J Trauma Stress. 2013;26:645–53.PubMedCrossRefGoogle Scholar
  153. 153.
    Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301:2462–71.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    van der Werf YD, Altena E, van Dijk KD, Strijers RL, De Rijke W, Stam CJ, et al. Is disturbed intracortical excitability a stable trait of chronic insomnia? A study using transcranial magnetic stimulation before and after multimodal sleep therapy. Biol Psychiatry. 2010;68:950–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Buysse DJ, Germain A, Hall M, Monk TH, Nofzinger EA. A neurobiological model of insomnia. Drug Discov Today Dis Models. 2011;8:129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Drake CL, Friedman NP, Wright KP Jr, Roth T. Sleep reactivity and insomnia: genetic and environmental influences. Sleep. 2011;34:1179–88.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Kalmbach DA, Pillai V, Arnedt JT, Drake CL. Identifying at-risk individuals for insomnia using the Ford insomnia response to stress test. Sleep. 2016;39:449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Llorens F, Zarranz JJ, Fischer A, Zerr I, Ferrer I. Fatal familial insomnia: clinical aspects and molecular alterations. Curr Neurol Neurosci Rep. 2017;17:30.PubMedCrossRefGoogle Scholar
  159. 159.
    Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med. 1992;326:444–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Medori R, Montagna P, Tritschler HJ, LeBlanc A, Cortelli P, Tinuper P, et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology. 1992;42:669–70.PubMedCrossRefGoogle Scholar
  161. 161.
    Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992;258:806–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Krasnianski A, Bartl M, Sanchez Juan PJ, Heinemann U, Meissner B, Varges D, et al. Fatal familial insomnia: clinical features and early identification. Ann Neurol. 2008;63:658–61.PubMedCrossRefGoogle Scholar
  163. 163.
    Krasnianski A, Heinemann U, Ponto C, Kortt J, Kallenberg K, Varges D, et al. Clinical findings and diagnosis in genetic prion diseases in Germany. Eur J Epidemiol. 2016;31:187–96.PubMedCrossRefGoogle Scholar
  164. 164.
    Montagna P, Gambetti P, Cortelli P, Lugaresi E. Familial and sporadic fatal insomnia. Lancet Neurol. 2003;2:167–76.PubMedCrossRefGoogle Scholar
  165. 165.
    Cortelli P, Fabbri M, Calandra-Buonaura G, Capellari S, Tinuper P, Parchi P, et al. Gait disorders in fatal familial insomnia. Mov Disord. 2014;29:420–4.PubMedCrossRefGoogle Scholar
  166. 166.
    Pedroso JL, Pinto WB, Souza PV, Ricarte IF, Landemberger MC, Martins VR, et al. Complex movement disorders in fatal familial insomnia: a clinical and genetic discussion. Neurology. 2013;81:1098–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Montagna P, Cortelli P, Avoni P, Tinuper P, Plazzi G, Gallassi R, et al. Clinical features of fatal familial insomnia: phenotypic variability in relation to a polymorphism at codon 129 of the prion protein gene. Brain Pathol. 1998;8:515–20.PubMedCrossRefGoogle Scholar
  168. 168.
    Gambetti P, Lugaresi E. Conclusions of the symposium. Brain Pathol. 1998;8:571–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Gambetti P, Parchi P, Petersen RB, Chen SG, Lugaresi E. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: clinical, pathological and molecular features. Brain Pathol. 1995;5:43–51.PubMedCrossRefGoogle Scholar
  170. 170.
    Dimitri D, Jehel L, Durr A, Levy-Soussan M, Andreux V, Laplanche JL, et al. Fatal familial insomnia presenting as psychosis in an 18-year-old man. Neurology. 2006;67:363–4.PubMedCrossRefGoogle Scholar
  171. 171.
    Parchi P, Castellani R, Cortelli P, Montagna P, Chen SG, Petersen RB, et al. Regional distribution of protease-resistant prion protein in fatal familial insomnia. Ann Neurol. 1995;38:21–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Parchi P, Petersen RB, Chen SG, Autilio-Gambetti L, Capellari S, Monari L, et al. Molecular pathology of fatal familial insomnia. Brain Pathol. 1998;8:539–48.PubMedCrossRefGoogle Scholar
  173. 173.
    Capellari S, Strammiello R, Saverioni D, Kretzschmar H, Parchi P. Genetic Creutzfeldt-Jakob disease and fatal familial insomnia: insights into phenotypic variability and disease pathogenesis. Acta Neuropathol. 2011;121:21–37.PubMedCrossRefGoogle Scholar
  174. 174.
    Krasnianski A, Sanchez Juan P, Ponto C, Bartl M, Heinemann U, Varges D, et al. A proposal of new diagnostic pathway for fatal familial insomnia. J Neurol Neurosurg Psychiatry. 2014;85:654–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Lee S, Antony L, Hartmann R, Knaus KJ, Surewicz K, Surewicz WK, et al. Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J. 2010;29:251–62.PubMedCrossRefGoogle Scholar
  176. 176.
    Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wuthrich K. Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci U S A. 1998;95:11667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Swietnicki W, Petersen RB, Gambetti P, Surewicz WK. Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem. 1998;273:31048–52.PubMedCrossRefGoogle Scholar
  178. 178.
    Tian C, Liu D, Sun QL, Chen C, Xu Y, Wang H, et al. Comparative analysis of gene expression profiles between cortex and thalamus in Chinese fatal familial insomnia patients. Mol Neurobiol. 2013;48:36–48.PubMedCrossRefGoogle Scholar
  179. 179.
    Frau-Mendez MA, Fernandez-Vega I, Ansoleaga B, Blanco Tech R, Carmona Tech M, Antonio Del Rio J, et al. Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol. 2017;27:95–106.PubMedCrossRefGoogle Scholar
  180. 180.
    Panda S. Circadian physiology of metabolism. Science. 2016;354:1008–15.PubMedCrossRefGoogle Scholar
  181. 181.
    Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med. 1999;5:1062–5.PubMedCrossRefGoogle Scholar
  182. 182.
    Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291:1040–3.PubMedCrossRefGoogle Scholar
  183. 183.
    Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Vink JM, Groot AS, Kerkhof GA, Boomsma DI. Genetic analysis of morningness and eveningness. Chronobiol Int. 2001;18:809–22.PubMedCrossRefGoogle Scholar
  185. 185.
    Aguiar GF, da Silva HP, Marques N. Patterns of daily allocation of sleep periods: a case study in an Amazonian riverine community. Chronobiologia. 1991;18:9–19.PubMedGoogle Scholar
  186. 186.
    Carpen JD, Archer SN, Skene DJ, Smits M, von Schantz M. A single-nucleotide polymorphism in the 5′-untranslated region of the hPER2 gene is associated with diurnal preference. J Sleep Res. 2005;14:293–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Carpen JD, von Schantz M, Smits M, Skene DJ, Archer SN. A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans. J Hum Genet. 2006;51:1122–5.PubMedCrossRefGoogle Scholar
  188. 188.
    Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21:569–76.PubMedCrossRefGoogle Scholar
  189. 189.
    Mishima K, Tozawa T, Satoh K, Saitoh H, Mishima Y. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:101–4.PubMedCrossRefGoogle Scholar
  190. 190.
    Parsons MJ, Lester KJ, Barclay NL, Archer SN, Nolan PM, Eley TC, et al. Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNbeta3 with sleep measures. J Sleep Res. 2014;23:595–604.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Respiratory Care and Sleep Control Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations