Advertisement

Pulmonary Malignancies (2): Mesothelioma—What Are the Roles of Genetic Factors in the Pathogenesis of Mesothelioma?

  • Takashi Nakano
  • Eisuke Shibata
  • Kozo Kuribayashi
  • Yoshie Yoshikawa
  • Masaki Ohmuraya
Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

Malignant pleural mesothelioma is a highly lethal and aggressive tumor, and its incidence is increasing because of widespread asbestos exposure in the last 50 years. Malignant mesothelioma is characterized by a long latency period of 40 years between initial exposure to asbestos and tumor development, indicating that multiple somatic genetic alterations contribute to its carcinogenesis. Molecular genetic studies have identified multiple chromosomal alterations in most mesothelioma tumor tissues and cell lines. In addition, these studies have identified several key genetic alterations. Mutation rates in CDKN2A, NF2, and BAP1, which are cancer suppressor genes, are high in mesothelioma cells. Moreover, diagnosis of a new familial cancer predisposition syndrome associated with germline BAP1 mutation indicates the importance of genetic factors in mesothelioma susceptibility. In this chapter, we have summarized the clinicopathological aspects of mesothelioma and have discussed the roles of genetic factors in the development of malignant pleural mesothelioma.

Keywords

Mesothelioma Asbestos BAP1 NF2 Genetic susceptibility Cancer predisposition syndrome 

References

  1. 1.
    Risberg B, Nickels J, Wågermark J. Familial clustering of malignant mesothelioma. Cancer. 1980;45:2422–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Hammar SP, Bockus D, Remington F, Freidman S, LaZerte G. Familial mesothelioma: a report of two families. Hum Pathol. 1989;20:107–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mazurek JM, Syamlal G, Wood JM, Hendricks SA, Weston A. Malignant mesothelioma mortality - United States, 1999–2015. MMWR Morb Mortal Wkly Rep. 2017;66:214–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gemba K, Fujimoto N, Kato K, Aoe K, Takeshima Y, Inai K, et al. National survey of malignant mesothelioma and asbestos exposure in Japan. Cancer Sci. 2012;103:483–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Tossavainen A. Global use of asbestos and the incidence of mesothelioma. Int J Occup Environ Health. 2004;10:22–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Myojin T, Azuma K, Okumura J, Uchiyama I. Future trends of mesothelioma mortality in Japan based on risk function. Ind Health. 2012;50:197–204.CrossRefPubMedGoogle Scholar
  8. 8.
    Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL. Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res. 1995;55:792–8.PubMedGoogle Scholar
  9. 9.
    Altomare DA, Testa JR. Cytogenetic and molecular genetic changes in malignant mesothelioma. In: O’Byne K, Rusch V, editors. Malignant pleural mesothelioma. Oxford: Oxford University Press; 2006. p. 239–50.Google Scholar
  10. 10.
    King JE, Hasleton PS. The epidemiology and etiology of malignant mesothelioma. In: O’Byne K, Rusch V, editors. Malignant pleural mesothelioma. Oxford: Oxford University Press; 2006. p. 1–18.Google Scholar
  11. 11.
    Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res. 1993;53:4349–55.PubMedGoogle Scholar
  12. 12.
    Bjorkqvist AM, Tammilehto L, Anttila S, Mattson K, Knuutila S. Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer. 1997;75:523–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lindholm PM, Salmenkivi K, Vauhkonen H, Nicholson AG, Anttila S, Kinnula VL, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119(1–2):46–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yoshikawa Y, Sato A, Tsujimura T, Morinaga T, Fukuoka K, Yamada S, et al. Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells. Int J Oncol. 2011;39:1365–74.PubMedGoogle Scholar
  16. 16.
    Chirac P, Maillet D, Lepretre F, Isaac S, Glehen O, Figeac M, et al. Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array. Hum Pathol. 2016;55:72–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci U S A. 2016;113:13432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bolognesi C, Filiberti R, Neri M, Perrone E, Landini E, Canessa PA, et al. High frequency of micronuclei in peripheral blood lymphocytes as index of susceptibility to pleural malignant mesothelioma. Cancer Res. 2002;62:5418–9.PubMedGoogle Scholar
  20. 20.
    Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522(7555):179–84.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kobayashi N, Toyooka S, Yanai H, Soh J, Fujimoto N, Yamamoto H, et al. Frequent p16 inactivation by homozygous deletion or methylation is associated with a poor prognosis in Japanese patients with pleural mesothelioma. Lung Cancer. 2008;62:120–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature. 2001;413(6851):86–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Hu Q, Akatsuka S, Yamashita Y, Ohara H, Nagai H, Okazaki Y, et al. Homozygous deletion of CDKN2A/2B is a hallmark of iron-induced high-grade rat mesothelioma. Lab Investig. 2010;90(3):360–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Nabeshima K, Matsumoto S, Hamasaki M, Hida T, Kamei T, Hiroshima K, et al. Use of p16 FISH for differential diagnosis of mesothelioma in smear preparations. Diagn Cytopathol. 2016;44:774–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Hamasaki M, Matsumoto S, Abe S, Hamatake D, Kamei T, Hiroshima K, et al. Low homozygous/high heterozygous deletion status by p16 FISH correlates with a better prognostic group than high homozygous deletion status in malignant pleural mesothelioma. Lung Cancer. 2016;99:155–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92:10854–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55:1227–31.PubMedGoogle Scholar
  28. 28.
    McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 1997;11:1253–65.CrossRefPubMedGoogle Scholar
  29. 29.
    McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 1998;12(8):1121–33.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fleury-Feith J, Lecomte C, Renier A, Matrat M, Kheuang L, Abramowski V, et al. Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene. 2003;22(24):3799–805.CrossRefPubMedGoogle Scholar
  31. 31.
    Kakiuchi T, Takahara T, Kasugai Y, Arita K, Yoshida N, Karube K, et al. Modeling mesothelioma utilizing human mesothelial cells reveals involvement of phospholipase-C beta 4 in YAP-active mesothelioma cell proliferation. Carcinogenesis. 2016. pii: bgw084.Google Scholar
  32. 32.
    Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71:873–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L, et al. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Cancer Res. 2016.  https://doi.org/10.1158/1078-0432.CCR-16-1971.
  34. 34.
    Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yoshikawa Y, Sato A, Tsujimura T, Emi M, Morinaga T, Fukuoka K, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012;103:868–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Zauderer MG, Bott M, McMillan R, Sima CS, Rusch V, Krug LM, et al. Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J Thorac Oncol. 2013;8:1430–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10:565–76.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Emi M, Yoshikawa Y, Sato C, Sato A, Sato H, Kato T, et al. Frequent genomic rearrangements of BRCA1 associated protein-1 (BAP1) gene in Japanese malignant mesothelioma-characterization of deletions at exon level. J Hum Genet. 2015;60:647–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Cigognetti M, Lonardi S, Fisogni S, Balzarini P, Pellegrini V, Tironi A, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28:1043–57.CrossRefGoogle Scholar
  40. 40.
    Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43:1018–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carbone M, Flores EG, Emi M, Johnson TA, Tsunoda T, Behner D, et al. Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015;11(12):e1005633.  https://doi.org/10.1371/journal.pgen.1005633. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nishikawa H, Wu W, Koike A, Kojima R, Gomi H, Fukuda M, et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009;69:111–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS, et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 2012;337(6101):1541–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xu J, Kadariya Y, Cheung M, Pei J, Talarchek J, Sementino E, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res. 2014;74:4388–97.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75:264–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37.CrossRefPubMedGoogle Scholar
  49. 49.
    De Rienzo A, Richards WG, Yeap BY, Coleman MH, Sugarbaker PE, Chirieac LR, et al. Sequential binary gene ratio tests define a novel molecular diagnostic strategy for malignant pleural mesothelioma. Clin Cancer Res. 2013;19:2493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bruno R, Ali G, Giannini R, Proietti A, Lucchi M, Chella A, et al. Malignant pleural mesothelioma and mesothelial hyperplasia: a new molecular tool for the differential diagnosis. Oncotarget. 2017;8:2758–70.PubMedGoogle Scholar
  51. 51.
    Ivanov SV, Goparaju CM, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285:22809–17.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 2011;17:4965–74.CrossRefPubMedGoogle Scholar
  53. 53.
    Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24:3128–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 2015;6:23480–95.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Weber DG, Johnen G, Bryk O, Jockel KH, Bruning T. Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma—a pilot study. PLoS One. 2012;7(1):e30221.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tomasetti M, Staffolani S, Nocchi L, Neuzil J, Strafella E, Manzella N, et al. Clinical significance of circulating miR-126 quantification in malignant mesothelioma patients. Clin Biochem. 2012;45(7–8):575–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Takashi Nakano
    • 1
  • Eisuke Shibata
    • 2
  • Kozo Kuribayashi
    • 2
  • Yoshie Yoshikawa
    • 3
  • Masaki Ohmuraya
    • 3
  1. 1.Center for Respiratory MedicineOtemae HospitalOsakaJapan
  2. 2.Division of Respiratory Diseases, Department of Internal MedicineHyogo College of MedicineNishinomiyaJapan
  3. 3.Department of GeneticsHyogo College of MedicineNishinomiyaJapan

Personalised recommendations