A Review of Bioreactors and Mechanical Stimuli

  • Marzia Brunelli
  • Cécile Perrault
  • Damien LacroixEmail author
Part of the Frontiers of Biomechanics book series (FB, volume 3)


The increased need to accelerate the healing process of critical size defects in the bone led to the study of optimal combination of cells, materials and external stimuli to obtain fully differentiated tissue to the injured site. Bioreactors play a crucial role in the control over the development of functional tissue allowing control over the surrounding chemical and mechanical environment. This chapter aims to review bioreactor systems currently available for monitoring mesenchymal stem cells (MSCs) behaviour under mechanical stimuli and to give an insight of their effect on cellular commitment. Shear stress, mechanical strain and pulsed electromagnetic field bioreactors are presented, and the effect of multiple conditions under varying parameters such as amplitude, frequency or duration of the stimuli on bone progenitor cells differentiation is considered and extensively discussed with particular focus on osteogenic and chondrogenic commitment.


Bioreactors Mechanical stimuli Tension Compression Shear stress MSCs Differentiation Osteogenesis 


  1. Aaron RK, Ciombor D, Simon BJ (2004) Treatment of non-unions with electric and electromagnetic fields. Clin Orthop Relat Res 419:21–29. Available at: Accessed 29 May 2015CrossRefGoogle Scholar
  2. Abrahamsson CK et al (2010) Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng A 16(12):3709–3718. Available at: Accessed 16 Aug 2013CrossRefGoogle Scholar
  3. Antonsson EK, Mann RW (1985) The frequency content of gait. J Biomech 18(1):39–47CrossRefGoogle Scholar
  4. Au-Yeung KL et al (2010) Development of a micromanipulator-based loading device for mechanoregulation study of human mesenchymal stem cells in three-dimensional collagen constructs. Tissue Eng Part C 16(1):93–107CrossRefGoogle Scholar
  5. Bancroft GN et al (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts on a dose-depend manner. Natl Acad Sci 99(20):12600–12605CrossRefGoogle Scholar
  6. Bassett CAL, Pilla A, Pawluk R (1977) A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields: a preliminary report. Clin Orthop Relat Res 124:128–143. Available at: Accessed 29 May 2015Google Scholar
  7. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286. Available at: Accessed 7 Aug 2013CrossRefGoogle Scholar
  8. Bhattacharya S et al (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS ) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRefGoogle Scholar
  9. Bjerre L et al (2011) Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. J Biomed Mater Res A 97(3):251–263. Available at: Accessed 27 Oct 2014CrossRefGoogle Scholar
  10. Brunelli M, Perrault CM, Lacroix D (2017a) Mechanical response of 3D insert® PCL to compression. J Mech Behav Biomed Mater 65:478–489. CrossRefGoogle Scholar
  11. Brunelli M, Perrault CM, Lacroix D (2017b) Short bursts of cyclic mechanical compression modulates tissue formation in a 3D hybrid scaffold. J Mech Behav Biomed Mater 71:165–174. CrossRefGoogle Scholar
  12. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347CrossRefGoogle Scholar
  13. Chen Y et al (2011) Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering. Tissue Eng Part C 17(12):1211–1221. Available at: Accessed 14 Sept 2013CrossRefGoogle Scholar
  14. Cherry RS (1993) Animal cells in turbulent fluids: details of the physiscal stimulus and the biological response. Biotechnol Adv 11:279–299CrossRefGoogle Scholar
  15. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:131–139. Available at: Accessed 9 July 2014CrossRefGoogle Scholar
  16. Damaraju S et al. (2014) The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 1–12. Available at: Accessed 19 Sept 2014
  17. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700CrossRefGoogle Scholar
  18. Elder SH et al (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482CrossRefGoogle Scholar
  19. Finkemeier CG (2002) Bone-Grafting and Bone-Graft Substitutes. J Bone Joint Surg 84A(3):454–463CrossRefGoogle Scholar
  20. Friedl G et al (2007) Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthr Cartil 15(11):1293–1300. Available at: Accessed 1 Oct 2014CrossRefGoogle Scholar
  21. Haudenschild AK et al (2009) Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng 37(3):492–502. Available at: Accessed 20 Jan 2014CrossRefGoogle Scholar
  22. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323CrossRefGoogle Scholar
  23. Jacobs CR et al (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969–976CrossRefGoogle Scholar
  24. Jagodzinski M et al (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cells Mater 7:35–41CrossRefGoogle Scholar
  25. Jansen JH et al (2010) Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 11:188–199CrossRefGoogle Scholar
  26. Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316CrossRefGoogle Scholar
  27. Kane BJ et al (2006) Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 78(13):4291–4298CrossRefGoogle Scholar
  28. Kausar H, Kishore RN (2013) Bone tissue engineering. Int J Pharm Pharm Sci 5(1):30–32Google Scholar
  29. Kearney EM et al (2010) Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng 38(5):1767–1779. Available at: Accessed 20 Sept 2014CrossRefGoogle Scholar
  30. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res Part C 85(Part C):75–85. Available at: Accessed 7 Nov 2013CrossRefGoogle Scholar
  31. Khan OF, Chamberlain MD, Sefton MV (2012) Toward an in vitro vasculature: differentiation of mesenchymal stromal cells within an endothelial cell-seeded modular construct in a microfluidic flow chamber. Tissue Eng A, 18:744–756. Available at: Accessed 6 Aug 2013CrossRefGoogle Scholar
  32. Kim L et al (2006) Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6(3):394–406. Available at: Accessed 10 Aug 2013CrossRefGoogle Scholar
  33. Kim L, Toh Y, Voldman J (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7(6):681–694. Available at: Accessed 20 Aug 2013CrossRefGoogle Scholar
  34. Klein-Nulend J et al (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts - correlaation with prostaglandin regulation. Biochem Biophys Res Commun 217(2):640–648CrossRefGoogle Scholar
  35. Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol 53(10):576–580. Available at: Accessed 23 Sept 2013CrossRefGoogle Scholar
  36. Klein-Nulend J, Bacabac R, Bakker A (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cells Mater 24:278–291CrossRefGoogle Scholar
  37. Koch MA et al (2010) Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J Biomed Mater Res A 95(4):1011–1018. Available at: Accessed 14 Sept 2013CrossRefGoogle Scholar
  38. Kong Z et al (2012) Dynamic compression promotes proliferation and neovascular networks of endothelial progenitor cells in demineralized bone matrix scaffold seed. J Appl Physiol 113(4):619–626. Available at: Accessed 19 Sept 2014CrossRefGoogle Scholar
  39. Kramarenko AV, Tan U (2003) Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci 113:1007–1019CrossRefGoogle Scholar
  40. Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Transact A Math Phys Eng Sci 367(1895):1993–2009. Available at: Accessed 4 Sept 2013zbMATHCrossRefGoogle Scholar
  41. Li YJ et al (2004) Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Sci 22:1283–1289Google Scholar
  42. Li Z et al (2010) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng 16(2):575–584CrossRefGoogle Scholar
  43. Lim CT, Bershadsky A, Sheetz MP (2010) Mechanobiology. J R Soc Interface 7:291–293. Available at: Accessed 4 Sept 2014CrossRefGoogle Scholar
  44. Liu C et al (2013) Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics 34(6):453–464. Available at: CrossRefGoogle Scholar
  45. Mack PJ et al (2004) Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am J Physiol 287(4):954–962CrossRefGoogle Scholar
  46. MacQueen L et al (2012) Three-dimensional mechanical compression of biomaterials in a microfabricated bioreactor with on-chip strain sensors. In: 16th intern conf miniaturized systems for chemistry and life science, p 1141–43Google Scholar
  47. Mauck R (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil 11(12):879–890. Available at: Accessed 22 Jan 2014CrossRefGoogle Scholar
  48. Mauney JR et al (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74(5):458–468. Available at: Accessed 8 Nov 2013CrossRefGoogle Scholar
  49. Mayer-Wagner S et al (2011) Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32(4):283–290CrossRefGoogle Scholar
  50. McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495. Available at: Accessed 13 Nov 2013CrossRefGoogle Scholar
  51. Meinel L et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155. Available at: Accessed 27 Aug 2013CrossRefGoogle Scholar
  52. Melchels FP et al (2011) The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878–2884. Available at: Accessed 14 Sept 2013CrossRefGoogle Scholar
  53. Millare B et al (2008) Dependence of the quality of adhesion between poly (dimethylsiloxane) and glass surfaces on the conditions of treatment with oxygen plasma. Langmuir 24:13218–13224CrossRefGoogle Scholar
  54. Ozcivici E et al (2010) Low-level vibrations retain bone marrow ’ s osteogenic potential and augment recovery of trabecular bone during Reambulation. PLoS One 5(6):11178–11188CrossRefGoogle Scholar
  55. Papadimitropoulos A et al (2013) A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion. J Tissue Eng Regen Med 7:183–191CrossRefGoogle Scholar
  56. Park S et al (2012) Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. In: Kerkis I (ed) PLoS ONE 7(9); 46689–700. Available at: Accessed 11 Feb 2014CrossRefGoogle Scholar
  57. Plecis A, Chen Y (2007) Fabrication of microfluidic devices based on glass–PDMS–glass technology. Microelectron Eng 84:1265–1269. Available at: Accessed 9 Aug 2013CrossRefGoogle Scholar
  58. Porter B et al (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38(3):543–549. Available at: Accessed 22 Aug 2013CrossRefGoogle Scholar
  59. Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210–215CrossRefGoogle Scholar
  60. Rauh J et al (2011) Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev 17(4):263–280. Available at: Accessed 27 Octo 2014CrossRefGoogle Scholar
  61. Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16. Available at: Accessed 23 Sept 2013CrossRefGoogle Scholar
  62. Rui YF et al (2011) Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res 29(3):390–396. Available at: Accessed Sept 2014CrossRefGoogle Scholar
  63. Salazar GT, Ohneda O (2012) Review of biophysical factors affecting osteogenic differentiation of human adult adipose-derived stem cells. Biophys Rev 5(1):11–28. Available at: Accessed 17 Nov 2013CrossRefGoogle Scholar
  64. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRefGoogle Scholar
  65. Scaglione S et al (2006) Engineering of osteoinductive grafts by isolation and expansion of ovine bone marrow stromal cells directly on 3D ceramic scaffolds. Biotechnol Bioeng 93(1):181–187. Available at: Accessed 5 Feb 2015CrossRefGoogle Scholar
  66. Sikavitsas VI et al (2005) Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann Biomed Eng 33(1):63–70CrossRefGoogle Scholar
  67. Sittichockechaiwut A et al (2009) Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone 44(5):822–829. Available at: Accessed 22 Jan 2014CrossRefGoogle Scholar
  68. Sittichokechaiwut A et al (2010) Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cells. Eur Cells Mater 20:45–57CrossRefGoogle Scholar
  69. Sobral JM et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018. Available at: Accessed 14 Oct 2014CrossRefGoogle Scholar
  70. Steinmetz NJ, Bryant SJ (2011) The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Acta Biomater 7(11):3829–3840. Available at: Accessed 10 June 2014CrossRefGoogle Scholar
  71. Sun L et al (2009) Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30(4):251–260CrossRefGoogle Scholar
  72. Sun L et al (2010) Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics 31(3):209–219Google Scholar
  73. Tan SD et al (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41(5):745–751. Available at: Accessed 23 Sept 2013CrossRefGoogle Scholar
  74. Tan SD et al (2008) Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 369(4):1150–1154. Available at: Accessed 23 Sept 2013CrossRefGoogle Scholar
  75. Tanaka SM (1999) A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J Biomech 32(4):427–430CrossRefGoogle Scholar
  76. Tanaka SM et al (2003) Effects of broad frequency vibration on cultured osteoblasts. J Biomech 36(1):73–80. Available at: CrossRefGoogle Scholar
  77. Terraciano V et al (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738CrossRefGoogle Scholar
  78. Thevenot P et al (2008) Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C 14(4):319–331. Available at: Accessed 15 Aug 2013CrossRefGoogle Scholar
  79. Thorpe SD et al (2008) Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun 377(2):458–462. Available at: Accessed 7 Nov 2013CrossRefGoogle Scholar
  80. Thorpe SD et al (2010) The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38(9):2896–2909. Available at: Accessed 4 Sept 2014CrossRefGoogle Scholar
  81. Thorpe SD et al (2013) Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage. PLoS One 8(4):60764–60777. Available at: Accessed 8 Sept 2014CrossRefGoogle Scholar
  82. Toh Y et al (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309CrossRefGoogle Scholar
  83. Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5(1):14–19CrossRefGoogle Scholar
  84. Tsai M et al (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27(9):1169–1174CrossRefGoogle Scholar
  85. Tuan HS, Hutmacher DW (2005) Application of micro CT and computation modeling in bone tissue engineering. Comput Aided Des 37(11):1151–1161. Available at: Accessed 27 Aug 2013CrossRefGoogle Scholar
  86. Van Lenthe GH et al (2007) Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28(15):2479–2490. Available at: Accessed 20 Aug 2013CrossRefGoogle Scholar
  87. Vezeridis PS et al (2006) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 348(3):1082–1088. Available at: Accessed 23 Sept 2013CrossRefGoogle Scholar
  88. Vunjak-Novakovic G et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17(1):130–138CrossRefGoogle Scholar
  89. Wendt D et al (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84(2):205–214. Available at: Accessed 20 Aug 2013CrossRefGoogle Scholar
  90. Wilson CJ et al (2005) Mediation of biomaterial – cell interactions by adsorbed proteins: a review. Tissue Eng 11(1):1–18MathSciNetCrossRefGoogle Scholar
  91. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48(2):171–181. Available at: Accessed 25 Oct 2014CrossRefGoogle Scholar
  92. Zhang Z et al (2010) A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 31(33):8684–8695. Available at: Accessed 14 Oct 2014CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marzia Brunelli
    • 1
  • Cécile Perrault
    • 1
  • Damien Lacroix
    • 1
    Email author
  1. 1.INSIGNEO Institute for in silico MedicineThe University of SheffieldSheffieldUK

Personalised recommendations