Ergonomics and Human Factors for a Sustainable Future: Suggestions for a Way Forward

  • Andrew Thatcher
  • Paul H. P. Yeow


In reviewing the published literature and the work presented in this book, we propose a set of five goals for human factors and ergonomics to help the discipline understand and appropriately address the challenges raised by sustainability. We believe that these goals will help focus the human factors and ergonomics discipline to help facilitate a sustainable future for humankind. As explained in this chapter, the five goals are the need to move: (1) from specialised to multidisciplinary, interdisciplinary, and transdisciplinary theory; (2) from systems HFE to complexity HFE; (3) from value-free to value-laden science; (4) from mitigation to adaptation; and (5) from general to local solutions. We show how the chapters in this book have helped shape the human factors and ergonomics agenda in relation to these goals.


Interdisciplinary Transdisciplinary Complex systems Values Mitigation Adaptive 


  1. Bar-Yam, Y. (2002). Complexity rising: From human beings to human civilization, a complexity profile. Oxford, UK: UNESCO Publishers.Google Scholar
  2. Benjamin, N., Beegle, K., Recanatini, F., & Santini, M. (2014). Informal economy and the World Bank. Policy research working paper 6888.Google Scholar
  3. Bolis, I., Brunoro, C. M., & Sznelwar, L. I. (2016). Work for sustainability: Case studies of Brazilian companies. Applied Ergonomics, 57, 72–79.CrossRefGoogle Scholar
  4. Boudeau, C., Wilkin, P., & Dekker, S. W. (2014). Ergonomics as authoritarian or libertarian: Learning from Colin Ward’s politics of design. The Design Journal, 17, 91–114.CrossRefGoogle Scholar
  5. Carayon, P. (2006). Human factors of complex sociotechnical systems. Applied Ergonomics, 37, 525–535.CrossRefGoogle Scholar
  6. Cilliers, P. (1998). Complexity and postmodernism: Understanding complex systems. London: Routledge.Google Scholar
  7. Cocron, P., Bühler, F., Franke, T., Neumann, I., Dielmann, B., & Krems, J. F. (2013). Energy recapture through deceleration – Regenerative braking in electric vehicles from a user perspective. Ergonomics, 56, 1203–1215.CrossRefGoogle Scholar
  8. Dekker, S. W., Hancock, P. A., & Wilkin, P. (2013). Ergonomics and sustainability: Towards an embrace of complexity and emergence. Ergonomics, 56, 357–364.CrossRefGoogle Scholar
  9. Docherty, P., Forslin, J., & Shani, A. B. (Eds.). (2002). Creating sustainable work systems: Emerging perspectives and practice. London: Routledge.Google Scholar
  10. Drury, C. G. (2008). The future of work in a sustainable society. In K. J. Zink (Ed.), Corporate sustainability as a challenge for comprehensive management (pp. 199–214).CrossRefGoogle Scholar
  11. Drury, C. G. (2014). Can HF/E professionals contribute to global climate change solutions? Ergonomics in Design, 22, 30–33.CrossRefGoogle Scholar
  12. Dul, J., Bruder, R., Buckle, P., Carayon, P., Falzon, P., Marras, W. S., et al. (2012). A strategy for human factors/ergonomics: Developing the discipline and profession. Ergonomics, 55, 377–395.CrossRefGoogle Scholar
  13. Durugbo, C. (2013). Improving information recognition and performance of recycling chimneys. Ergonomics, 56, 409–421.CrossRefGoogle Scholar
  14. Fang, Y. M., & Sun, M. S. (2016). Applying eco-visualisations of different interface formats to evoke sustainable behaviours towards household water saving. Behaviour & Information Technology, 35, 748–757.CrossRefGoogle Scholar
  15. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238.CrossRefGoogle Scholar
  16. Fiksel, J. (2003). Designing resilient, sustainable systems. Environmental Science & Technology, 37, 5330–5339.CrossRefGoogle Scholar
  17. Fiore, S. M., Phillips, E., & Sellers, B. C. (2014). A transdisciplinary perspective on hedonomic sustainability design. Ergonomics in Design, 22, 22–29.CrossRefGoogle Scholar
  18. Franke, T., Arend, M. G., McIlroy, R. C., & Stanton, N. A. (2016). Ecodriving in hybrid electric vehicles – Exploring challenges for user-energy interaction. Applied Ergonomics, 55, 33–45.CrossRefGoogle Scholar
  19. Fréjus, M., & Guibourdenche, J. (2012). Analysing domestic activity to reduce household energy consumption. Work, 41(Supplement 1), 539–548.Google Scholar
  20. García-Acosta, G., Pinilla, M. H. S., Larrahondo, P. A. R., & Morales, K. L. (2014). Ergoecology: Fundamentals of a new multidisciplinary field. Theoretical Issues in Ergonomics Science, 15, 111–133.CrossRefGoogle Scholar
  21. Hancock, P. A., & Drury, C. G. (2011). Does human factors/ergonomics contribute to the quality of life? Theoretical Issues in Ergonomics Science, 12, 416–426.CrossRefGoogle Scholar
  22. Hanson, M. A. (2013). Green ergonomics: Challenges and opportunities. Ergonomics, 56, 399–408.Google Scholar
  23. Harvey, J., Thorpe, N., & Fairchild, R. (2013). Attitudes towards and perceptions of eco driving and the role of feedback systems. Ergonomics, 56, 507–521.CrossRefGoogle Scholar
  24. Hasle, P., & Jensen, P. L. (2012). Ergonomics and sustainability – Challenges from global supply chains. Work, 41(Supplement 1), 3906–3913.Google Scholar
  25. Hollnagel, E. (2012). FRAM: The functional resonance analysis method: Modelling complex socio-technical systems. Burlington, VT: Ashgate.Google Scholar
  26. Imada, A. S. (1991). The rationale of participatory ergonomics. In K. Noro & A. S. Imada (Eds.), Participatory ergonomics (pp. 30–49). London: Taylor & Francis.Google Scholar
  27. Incropera, F. P. (2016). Climate change: A wicked problem. New York: Cambridge University Press.CrossRefGoogle Scholar
  28. Katzeff, C., Nyblom, Å., Tunheden, S., & Torstensson, C. (2012). User-centred design and evaluation of EnergyCoach – An interactive energy service for households. Behaviour & Information Technology, 31, 305–324.CrossRefGoogle Scholar
  29. Kjellstrom, T., Gabrysch, S., Lemke, B., & Dear, K. (2009). The ‘Hothaps’ programme for assessing climate change impacts on occupational health and productivity: An invitation to carry out field studies. Global Health Action, 2, 2082.CrossRefGoogle Scholar
  30. Kobus, C. B., Mugge, R., & Schoormans, J. P. (2013). Washing when the sun is shining! How users interact with a household energy management system. Ergonomics, 56, 451–462.Google Scholar
  31. Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., et al. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science, 7, 25–43.CrossRefGoogle Scholar
  32. Lange-Morales, K., Thatcher, A., & García-Acosta, G. (2014). Towards a sustainable world through human factors and ergonomics: It is all about values. Ergonomics, 57, 1603–1615.CrossRefGoogle Scholar
  33. Lee, S. Y., & Kang, M. (2013). Innovation characteristics and intention to adopt sustainable facilities management practices. Ergonomics, 56, 480–491.CrossRefGoogle Scholar
  34. Leveson, N. G. (2004). A new accident model for engineering safer systems. Safety Science, 42, 237–270.CrossRefGoogle Scholar
  35. Martin, K. K., Legg, S. S., & Brown, C. C. (2013). Designing for sustainability: Ergonomics – Carpe diem. Ergonomics, 56, 365–388.CrossRefGoogle Scholar
  36. Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., et al. (2009). Indirect emissions from biofuels: How important? Science, 326, 1397–1399.CrossRefGoogle Scholar
  37. Meshkati, N., Tabibzadeh, M., Farshid, A., Rahimi, M., & Alhanaee, G. (2016). People-technology-ecosystem integration: A framework to ensure regional interoperability for safety, sustainability, and resilience of interdependent energy, water, and seafood sources in the (Persian) Gulf. Human Factors, 58, 43–57.CrossRefGoogle Scholar
  38. Moore, D., & Barnard, T. (2012). With eloquence and humanity? Human factors/ergonomics in sustainable human development. Human Factors, 54, 940–951.CrossRefGoogle Scholar
  39. Moray, N. (1995). Ergonomics and the global problems of the twenty-first century. Ergonomics, 38, 1691–1707.CrossRefGoogle Scholar
  40. Moray, N. (2000). Culture, politics and ergonomics. Ergonomics, 43, 858–868.CrossRefGoogle Scholar
  41. Murphy, R. (2012). Sustainability: A wicked problem. Sociologica, 6, 1–23.Google Scholar
  42. Nickerson, R. S. (1992). What does human factors research have to do with environmental management? Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 36, 636–639.CrossRefGoogle Scholar
  43. Norberg, J., & Cumming, G. S. (Eds.). (2008). Complexity theory for a sustainable future. New York: Columbia University Press.Google Scholar
  44. Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972.CrossRefGoogle Scholar
  45. Radjiyev, A., Qiu, H., Xiong, S., & Nam, K. (2015). Ergonomics and sustainable development in the past two decades (1992–2011): Research trends and how ergonomics can contribute to sustainable development. Applied Ergonomics, 46, 67–75.CrossRefGoogle Scholar
  46. Rasmussen, J. (1997). Risk management in a dynamic society: A modelling problem. Safety Science, 27, 183–213.CrossRefGoogle Scholar
  47. Read, G. J., Salmon, P. M., Lenné, M. G., & Jenkins, D. P. (2015). Designing a ticket to ride with the Cognitive Work Analysis Design Toolkit. Ergonomics, 58, 1266–1286.CrossRefGoogle Scholar
  48. Revell, K. M., & Stanton, N. A. (2016). Mind the gap – Deriving a compatible user mental model of the home heating system to encourage sustainable behaviour. Applied Ergonomics, 57, 48–61.CrossRefGoogle Scholar
  49. Richardson, M., Maspero, M., Golightly, D., Sheffield, D., Staples, V., & Lumber, R. (2017). Nature: A new paradigm for well-being and ergonomics. Ergonomics, 60, 292–305.CrossRefGoogle Scholar
  50. Salmon, P. M., Walker, G. H., Read, G. J. M., Goode, N., & Stanton, N. A. (2017). Fitting methods to paradigms: Are ergonomics methods fit for systems thinking? Ergonomics, 60, 194–205.CrossRefGoogle Scholar
  51. Sauer, J., Wiese, B. S., & Rüttinger, B. (2002). Improving ecological performance of electrical consumer products: The role of design-based measures and user variables. Applied Ergonomics, 33, 297–307.CrossRefGoogle Scholar
  52. Sauer, J., Wiese, B. S., & Rüttinger, B. (2003). Designing low-complexity electrical consumer products for ecological use. Applied Ergonomics, 34, 521–531.CrossRefGoogle Scholar
  53. Sauer, J., Wiese, B. S., & Rüttinger, B. (2004). Ecological performance of electrical consumer products: The influence of automation and information-based measures. Applied Ergonomics, 35, 37–47.CrossRefGoogle Scholar
  54. Shappell, S. A., & Wiegmann, D. A. (2012). A human error approach to aviation accident analysis: The human factors analysis and classification system. Burlington, VT: Ashgate.Google Scholar
  55. Siemieniuch, C. E., Sinclair, M. A., & de Henshaw, M. J. C. (2015). Global drivers, sustainable manufacturing and systems ergonomics. Applied Ergonomics, 51, 104–119.CrossRefGoogle Scholar
  56. Stanton, N. A., McIlroy, R. C., Harvey, C., Blainey, S., Hickford, A., Preston, J. M., et al. (2013). Following the cognitive work analysis train of thought: Exploring the constraints of modal shift to rail transport. Ergonomics, 56(3), 522–540.CrossRefGoogle Scholar
  57. Stedmon, A. W., Winslow, R., & Langley, A. (2013). Micro-generation schemes: User behaviours and attitudes towards energy consumption. Ergonomics, 56, 440–450.CrossRefGoogle Scholar
  58. Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The Anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 842–867.CrossRefGoogle Scholar
  59. Steimle, U., & Zink, K. J. (2006). Sustainable development and human factors. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors (2nd ed.). London: Taylor & Francis.Google Scholar
  60. Stokols, D., Misra, S., Runnerstrom, M. G., & Hipp, J. A. (2009). Psychology in an age of ecological crisis: From personal angst to collective action. American Psychologist, 64, 181–193.CrossRefGoogle Scholar
  61. Thatcher, A. (2013). Green ergonomics: Definition and scope. Ergonomics, 56, 389–398.CrossRefGoogle Scholar
  62. Thatcher, A., & Milner, K. (2014). Changes in productivity, psychological wellbeing and physical wellbeing from working in a ‘green’ building. Work, 49, 381–393.Google Scholar
  63. Thatcher, A., & Yeow, P. H. (2016). A sustainable system of systems approach: A new HFE paradigm. Ergonomics, 59, 167–178.CrossRefGoogle Scholar
  64. Van den Bergh, J. C. J. M., & Rietveld, P. (2004). Reconsidering the limits to world population: Meta-analysis and meta-prediction. BioScience, 54, 195–204.CrossRefGoogle Scholar
  65. Vicente, K. J. (1998). Human factors and global problems: A systems approach. Systems Engineering, 1, 57–69.CrossRefGoogle Scholar
  66. Vicente, K. J. (1999). Cognitive work analysis: Toward safe, productive, and healthy computer-based work. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  67. Walker, G. H., Gibson, H., Stanton, N. A., Baber, C., Salmon, P., & Green, D. (2006). Event analysis of systemic teamwork (EAST): A novel integration of ergonomics methods to analyse C4i activity. Ergonomics, 49, 1345–1369.CrossRefGoogle Scholar
  68. Walker, G. H., Salmon, P. M., Bedinger, M., & Stanton, N. A. (2017). Quantum ergonomics: Shifting the paradigm of the systems agenda. Ergonomics, 60, 157–166.CrossRefGoogle Scholar
  69. Walker, G. H., Stanton, N. A., Salmon, P. M., Jenkins, D. P., & Rafferty, L. (2010). Translating concepts of complexity to the field of ergonomics. Ergonomics, 53, 1175–1186.CrossRefGoogle Scholar
  70. Wilkin, P. (2010). The ideology of ergonomics. Theoretical Issues in Ergonomics Science, 11, 230–244.CrossRefGoogle Scholar
  71. Wilson, J. R. (2014). Fundamentals of systems ergonomics/human factors. Applied Ergonomics, 45, 5–13.CrossRefGoogle Scholar
  72. Wisner, A. (1985). Ergonomics in industrially developing countries. Ergonomics, 28(8), 1213–1224.CrossRefGoogle Scholar
  73. Young, M. S., Birrell, S. A., & Stanton, N. A. (2011). Safe driving in a green world: A review of driver performance benchmarks and technologies to support ‘smart’ driving. Applied Ergonomics, 42, 533–539.CrossRefGoogle Scholar
  74. Zink, K. J. (2014). Designing sustainable work systems: The need for a systems approach. Applied Ergonomics, 45, 126–132.CrossRefGoogle Scholar
  75. Zink, K. J., Steimle, U., & Fischer, K. (2008). Human factors, business excellence and corporate sustainability: Differing perspectives, joint objectives. In K. J. Zink (Ed.), Corporate sustainability as a challenge for comprehensive management (pp. 3–18). Heidelberg, Germany: Physica-Verlag.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Andrew Thatcher
    • 1
  • Paul H. P. Yeow
    • 2
  1. 1.Psychology DepartmentUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.School of BusinessMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations