Advertisement

Biopolymer-Directed Magnetic Composites

  • Christian Debus
  • Maria Siglreitmeier
  • Helmut Cölfen
Chapter

Abstract

The question investigated in this chapter is: Can a material obtain the advantageous material properties of multiple biominerals, when the structural elements in each model biomineral, which are responsible for these properties, are combined into one new bioinspired material? Drawing inspiration from the natural biominerals nacre, chiton teeth, and bacterial magnetosomes, a model material, containing a magnetite-gelatin composite, filling a layered scaffold extracted from natural nacre, can be synthesized.

The biopolymer gelatin has a distinct influence on the size and shape of magnetite mineralized at ambient conditions. In the gel state, gelatin can be mineralized to form superpara- and ferrimagnetic gels with tunable particle size. The ferrogel synthesis can also be transferred into demineralized nacre scaffolds, yielding layered hybrid composites.

Besides more common analytical methods, SANS is used to investigate the structure of organic and inorganic phases individually, and molecular simulations following the Kawska-Zahn approach are employed to gain insight into the earliest stages of nucleation.

Notes

Acknowledgments

We gratefully acknowledge the financial support by the DFG priority program “Multifunctional Layered Magnetite Composites” (SPP1569). We want to thank Dirk Zahn and Tina Kollmann from the University of Erlangen for the simulation studies; Baohu Wu, Vitaliy Pipich, and Dietmar Schwahn from JCNS/MLZ for the scattering studies; and Damien Faivre from MPI Golm for support with the material design and early magnetite syntheses.

References

  1. Ames W (1947) Heat degradation of gelatin. J Soc Chem Ind 66:279–284CrossRefGoogle Scholar
  2. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750CrossRefPubMedGoogle Scholar
  3. Asenath-Smith E, Li H, Keene EC, Seh ZW, Estroff LA (2012) Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Adv Funct Mater 22:2891–2914CrossRefGoogle Scholar
  4. Barber AH, Lu D, Pugno NM (2015) Extreme strength observed in limpet teeth. J R Soc Interf 12Google Scholar
  5. Bäuerlein E (2008) Handbook of biomineralization: biological aspects and structure formation. Wiley, WeinheimGoogle Scholar
  6. Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013a) Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 8:e57070CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013b) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314CrossRefPubMedGoogle Scholar
  8. Brodsky PB, Werkmeister JA, Ramshaw JAM, (2004) Collagens and gelatins. In: Fahnestock S, Steinbüchel A (ed) Biopolymers: polyamides and complex proteinaceous materials II, vol 8. WILEY-VCHGoogle Scholar
  9. Burleson DJ, Penn RL (2006) Two-step growth of goethite from ferrihydrite. Langmuir 22:402–409CrossRefPubMedGoogle Scholar
  10. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. Currey JD (1977) Mechanical-properties of mother of pearl in tension. Proc R Soc Ser B-Bio 196:443–436CrossRefGoogle Scholar
  12. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518CrossRefPubMedGoogle Scholar
  13. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRefPubMedGoogle Scholar
  14. Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520CrossRefGoogle Scholar
  15. Heinemann F, Launspach M, Gries K, Fritz M (2011) Gastropod nacre: structure, properties and growth—biological, chemical and physical basics. Biophys Chem 153:126–153CrossRefPubMedGoogle Scholar
  16. Heiss A, Jahnen-Dechent W, Endo H, Schwahn D (2007) Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2:16–20CrossRefPubMedGoogle Scholar
  17. Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Cölfen H (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater 24:3187–3196. excerpt figures shown are licensed under CC BY-NC-ND 3.0CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jolivet JP, Vayssieres L, Chaneac C, Tronc E (1996) Precipitation of spinel iron oxide: nanoparticle size control. MRS Online Proc Libr 432:145–150Google Scholar
  19. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209–2211CrossRefGoogle Scholar
  20. Kniep R, Simon P (2007) Fluorapatite-gelatine-nanocomposites: self-organized morphogenesis, real structure and relations to natural hard materials In: Naka K (ed) Biomineralization I, vol 270. Springer, Berlin, pp 73–125Google Scholar
  21. Lemaire BJ, Davidson P, Ferre J, Jamet JP, Panine P, Dozov I, Jolivet JP (2002) Outstanding magnetic properties of nematic suspensions of goethite (alpha-FeOOH) nanorods. Phys Rev Lett 88:125507CrossRefPubMedGoogle Scholar
  22. Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a Bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17CrossRefPubMedGoogle Scholar
  23. Li H, Xin HL, Muller DA, Estroff LA (2009) Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326:1244–1247CrossRefPubMedGoogle Scholar
  24. Lowenstam HA (1971) Opal precipitation by marine gastropods (Mollusca). Science 171:487–490CrossRefPubMedGoogle Scholar
  25. Mann S, Perry CC, Webb J, Luke B, Williams RJP (1986) Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc R Soc Lond Ser B Biol Sci 227:179–190CrossRefGoogle Scholar
  26. Mao LB, Gao HL, Yao HB, Liu L, Colfen H, Liu G, Chen SM, Li SK, Yan YX, Liu YY, Yu SH (2016) Synthetic nacre by predesigned matrix-directed mineralization. Science 354:107–110CrossRefPubMedGoogle Scholar
  27. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520CrossRefPubMedGoogle Scholar
  28. Niederberger M, Colfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287CrossRefPubMedGoogle Scholar
  29. Nudelman F, Shimoni E, Klein E, Rousseau M, Bourrat X, Lopez E, Addadi L, Weiner S (2008) Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryo-scanning electron microscopy study. J Struct Biol 162:290–300CrossRefPubMedGoogle Scholar
  30. Özdemir Ö, Dunlop DJ, Moskowitz BM (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20:1671–1674CrossRefGoogle Scholar
  31. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971CrossRefPubMedGoogle Scholar
  32. Penn RL, Soltis JA (2014) Characterizing crystal growth by oriented aggregation. Cryst Eng Comm 16:1409–1418CrossRefGoogle Scholar
  33. Pereira-Mouriès L, Almeida M-J, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003CrossRefPubMedGoogle Scholar
  34. Pipich V, Balz M, Wolf SE, Tremel W, Schwahn D (2008) Nucleation and growth of CaCO3 mediated by the egg-white protein ovalbumin: a time-resolved in situ study using small-angle neutron scattering. J Am Chem Soc 130:6879–6892CrossRefPubMedGoogle Scholar
  35. Pouradier J, Venet AM (1952) The structure of gelatins. V. Degradation of gelatin in isoelectric solution. J Chim Phys Physicochim Biol 49:239–244Google Scholar
  36. Reinhard Schrieber HG (2007) Gelatine handbook. WILEY-VCH, WeinheimGoogle Scholar
  37. Roe RJ (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New YorkGoogle Scholar
  38. Saunders M, Kong C, Shaw JA, Macey DJ, Clode PL (2009) Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa. J Struct Biol 167:55–61CrossRefPubMedGoogle Scholar
  39. Siglreitmeier M (2015) PhD thesis, University of KonstanzGoogle Scholar
  40. Siglreitmeier M, Wu B, Kollmann T, Neubauer M, Nagy G, Schwahn D, Pipich V, Faivre D, Zahn D, Fery A, Cölfen H (2015) Multifunctional layered magnetic composites. Beilstein J Nanotechnol 6:134–148. excerpt figures shown are licensed under CC BY 2.0CrossRefPubMedPubMedCentralGoogle Scholar
  41. Simpson ET, Kasama T, Pósfai M, Buseck PR, Harrison RJ, Dunin-Borkowski RE (2005) Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J Phys Conf Ser 17:108CrossRefGoogle Scholar
  42. Sugimoto T, Matijević E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Sci 74:227–243CrossRefGoogle Scholar
  43. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80A:333–341CrossRefGoogle Scholar
  44. Taylor RM, Barbara, Self P (1987) Magnetite in soils; I, The synthesis of single-domain and superparamagnetic magnetite. Clay Miner 22:411–422CrossRefGoogle Scholar
  45. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45CrossRefGoogle Scholar
  46. Tewari PH, McLean AW (1972) Temperature dependence of point of zero charge of alumina and magnetite. J Colloid Interface Sci 40:267–272CrossRefGoogle Scholar
  47. Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R (2006) Biomimetic fluorapatite–gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem Int Ed 45:1905–1910CrossRefGoogle Scholar
  48. Vayssières L, Chanéac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interface Sci 205:205–212CrossRefPubMedGoogle Scholar
  49. Vereda F, de Vicente J, Morales MDP, Rull F, Hidalgo-Alvarez R (2008) Oxidation of ferrous hydroxides with nitrate: a versatile method for the preparation of magnetic colloidal particles. J Phys Chem C 112:5843–5849CrossRefGoogle Scholar
  50. Vereda F, de Vicente J, Hidalgo-Alvarez R (2013) Synthesis and characterization of single-domain monocrystalline magnetite particles by oxidative aging of Fe(OH)2. J Colloid Interface Sci 392:50–56CrossRefPubMedGoogle Scholar
  51. Vergés MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D Appl Phys 41:134003CrossRefGoogle Scholar
  52. Walz F (2002) The Verwey transition – a topical review. J Phys Condens Matter 14:R285Google Scholar
  53. Wandrey C, Bartkowiak A, Harding SE (2010) Materials for Encapsulation. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer New York, New York, pp 31–100Google Scholar
  54. Weaver JC, Wang QQ, Miserez A, Tantuccio A, Stromberg R, Bozhilov KN, Maxwell P, Nay R, Heier ST, DiMasi E, Kisailus D (2010) Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater Today 13:42–52CrossRefGoogle Scholar
  55. Wu B (2015) Bio-inspired Magnetite Mineralization in Gelatin Hydrogels: A Small Angle Scattering Investigation. PhD thesis, Universität KonstanzGoogle Scholar
  56. Xu AW, Ma YR, Colfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Christian Debus
    • 1
  • Maria Siglreitmeier
    • 1
  • Helmut Cölfen
    • 1
  1. 1.University KonstanzKonstanzGermany

Personalised recommendations