Advertisement

An Alternative Approach for Anticancer Compounds Production Through Plant Tissue Culture Techniques

  • Hari Gajula
  • Kumar Vadlapudi
  • Poornima D. Vijendra
  • J. Rajashekar
  • Torankumar Sannabommaji
  • Giridhara Basappa
  • T. U. Santhosh
Chapter

Abstract

Higher plants produce various anticancer secondary metabolites (colchicine, camptothecin, combretastatin, paclitaxel, plumbagin, podophyllotoxin, psoralen, vincristine, vinblastine, etc.). The indiscriminate harvesting of these plants from the wild for the metabolites and inadequate efforts for cultivation led to a decrease in natural populations. However, these metabolites/compounds exist in low quantities, and it is economically not feasible to obtain them in large scale. Moreover, the accumulation of these metabolites varies from its geographical and environmental conditions. Alternatively, economically feasible production strategies should be investigated in order to overcome these problems and to overproduce the metabolites of therapeutic importance. To this perspective, advances in plant cell and tissue cultures, mainly culturing of cells/tissues, suspension cultures, precursor feeding, hairy root cultures, and bioreactors using cell suspensions/hairy root cultures are evaluated as the feasible and cost-effective alternative means for the production of economically important compounds. The present chapter summarizes the latest techniques/strategies for the overproduction of anticancer metabolites using plant cell and tissue culture approaches.

Keywords

Anticancer compounds Bioreactors Cambial meristematic cells Hairy root cultures Plant tissue cultures 

References

  1. Anbazhagan VR, Abn CH, Harada E, Kim YS, Choi YE (2008) Podophyllotoxin production via cell adventitious root cultures of Podophyllum peltatum. In Vitro Cell Dev Biol Plant 44:494–501CrossRefGoogle Scholar
  2. Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Equip 20:72–83CrossRefGoogle Scholar
  3. Asada M, Shuler ML (1989) Stimulation of ajmalicine production and extraction from Catharanthus roseus: effect of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30:475–481CrossRefGoogle Scholar
  4. Atanas GA, Birgit W, Eva-Maria PW, Thomas L, Christoph W, Pavel U, Veronik T, Limei W, Stefan S, Elke HS, Judity MR, Daniela S, Johannes MB, Varley B, Marko DM, Brigitte K, Rudolf B, Verena MD, Hermann S (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614CrossRefGoogle Scholar
  5. Baebler S, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Zel J (2005) Establishment of cell suspension cultures of yew (Taxus media Rehd.) and assessment of their genomic stability. In Vitro Cell Dev Biol Plant 41:338–343CrossRefGoogle Scholar
  6. Baldi, Srivastava AK, Bisaria VS (2008) Effect of aeration on production of anticancer lignans by cell suspension cultures of Linum album. Appl Biochem Biotechnol 151:547–555CrossRefPubMedGoogle Scholar
  7. Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655CrossRefPubMedGoogle Scholar
  8. Berger RG (1995) Bioprocess technology. In: Berger RG (ed) Aroma biotechnology. Springer, Berlin, pp 139–148CrossRefGoogle Scholar
  9. Berlin J, Sasse F (1985) Selection and screening techniques for plant cell cultures. Adv Biochem Eng 31:99–132Google Scholar
  10. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477CrossRefPubMedGoogle Scholar
  11. Casson SA, Lindsey K (2003) Genes and signalling in root development. New Phytol 158:11–38CrossRefGoogle Scholar
  12. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002a) Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220CrossRefPubMedGoogle Scholar
  13. Chattopadhyay S, Srivastava AK, Bisaria VS (2002b) Optimisation of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Appl Biochem Biotechnol 102:381–393CrossRefPubMedGoogle Scholar
  14. Chen YC, Yi F, Cai M, Luo JX (2003) Effects of amino acids, nitrate, and ammonium on the growth and taxol production in cell cultures of Taxus yunnanensis. Plant Growth Regul 41:265–268CrossRefGoogle Scholar
  15. Choi HK, Kim SI, Son JS, Hong SS, Lee HS, Lee HJ (2000) Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis. Enzym Microb Technol 27:593–598CrossRefGoogle Scholar
  16. Cui L, Ni XL, Ji Q, Teng XJ, Yang YR, Wu C, Zekria D, Zhang DDS, Kai GY (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5:8227Google Scholar
  17. Cusido RM, Palazon J, Navia-Osorio A, Mallol A, Bonfill M, Morales C, Teresa Pinol M (1999) Production of taxol and baccatin III by a selected Taxus baccata line and its derived cell suspension culture. Plant Sci 146:101–107CrossRefGoogle Scholar
  18. Cusido MR, Palazon J, Bonfill M, Navia-Osorio A, Morales C, Pinol MT (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus x media. Biotechnol Prog 18:418–423CrossRefPubMedGoogle Scholar
  19. Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493CrossRefGoogle Scholar
  20. Deepthi S, Satheeshkumar K (2017) Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J 117:198–209CrossRefGoogle Scholar
  21. Dicosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453CrossRefPubMedGoogle Scholar
  22. Dougall DK (1987) Cell cloning and the selection of high yielding strains. In: Vasil IK, Constable F (eds) Cell culture and somatic cell genetics of plants. Cell culture in Phytochemistry. Academic, Orlando, pp 117–123CrossRefGoogle Scholar
  23. Fett-Neto AG, Pennington JJ, Di Cosmo F (1995) Effect of white light on taxol and baccatin III accumulation in cell cultures of Taxus cuspidata and Zucc. J Plant Physiol 146:584–590CrossRefGoogle Scholar
  24. Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing. Biotechnology 11:1007–1012PubMedGoogle Scholar
  25. Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152CrossRefPubMedGoogle Scholar
  26. Gangopadhyay M, Dewanjee S, Bhattacharya S (2011) Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. J Biosci Bioeng 111:706–710CrossRefPubMedGoogle Scholar
  27. Garden H (2004) Biotechnological production of podophyllotoxin by Linum album suspension cultures. PhD thesis. Heinrich-Heine Universitat, DusseldorfGoogle Scholar
  28. Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult 126:1–18CrossRefGoogle Scholar
  29. Hu Y, Yu W, Song L, XH D, Ma X, Liu Y, Ying Y (2016) Effects of light on production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminate Decne. Acta Physiol Plant 38:1–9CrossRefGoogle Scholar
  30. Isah T, Mujib A (2015) In vitro propagation and camptothecin production in Nothapodytes nimmoniana. Plant Cell Tissue Organ Cult 121:1–10CrossRefGoogle Scholar
  31. Iskandar NN, Iriawati I (2016) Vinblastine and Vincristine production on Madagascar Periwinkle (Catharanthus roseus (L.) G. Don) callus culture treated with polethylene glycol. Makara J Sci 20:7–16CrossRefGoogle Scholar
  32. Jaisi A, Panichayupakaranant P (2017) Chitosan elicitation and sequential Diaion® HP-20 addition a powerful approach for enhanced plumbagin production in Plumbago indica root cultures. Process Biochem 53:210–215CrossRefGoogle Scholar
  33. Jaziri M, Diallo BM, Vanhaelen MH, Vanhaelen-Fastre RJ, Zhiri A, Becu AG, Homes J (1990) Enzyme-linked immunosorbent assay for the detection and the semi-quantitative determination of taxane diterpenoids related to taxol in Taxus sp. and tissue cultures. J Pharm Belg 46:93–99Google Scholar
  34. Joshi JB, Elias CB, Patole MS (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem Eng J Biochem Eng J 62:121–141CrossRefGoogle Scholar
  35. Kadkade PG (1982) Growth and podophyllotoxin production in callus tissues of Podophyllum peltatum. Plant Sci Lett 25:107–115CrossRefGoogle Scholar
  36. Karwasara VS, Dixit VK (2011) Culture medium optimization for improved puerarin production by cell suspension cultures of Pueraria tuberosa (Roxb. ex Willd.) DC. In Vitro Cell Dev Biol Plant 48:189–199CrossRefGoogle Scholar
  37. Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369CrossRefGoogle Scholar
  38. Karwasara VS, Tomar P, Dixit VK (2011) Oxytocin influences the production of glycyrrhizin from cell cultures of Abrus precatorius Linn. Plant Growth Regul 65:401–405CrossRefGoogle Scholar
  39. Kaushik PS, Swamy MK, Balasubramanya S, Anuradha M (2015) Rapid plant regeneration, analysis of genetic fidelity and camptothecin content of micropropagated plants of Ophiorrhiza mungos Linn.-A potent anticancer plant. J Crop Sci Biotechnol 18:1–8CrossRefGoogle Scholar
  40. Khani S, Barar J, Movafeghi A, Omidi Y (2012) Production of anticancer secondary metabolites: impacts of bioprocess engineering. In: Orhan IE (ed) Biotechnological production of plant secondary metabolites. Bentham Books, Dubai, pp 215–240CrossRefGoogle Scholar
  41. Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR, Omidi Y (2006) Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int 30:262–269CrossRefPubMedGoogle Scholar
  42. Komaraiah P, Ramakrishna SV, Reddanna P, Kavi Kishor PB (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol 101:181–187CrossRefPubMedGoogle Scholar
  43. Kwon IC, Yoo YJ, Lee JH, Hyun JO (1998) Enhancement of taxol production by in situ recovery of product. Process Biochem 33:701–707CrossRefGoogle Scholar
  44. Lee EK, Jin YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S, Halbritter F (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213–1217CrossRefGoogle Scholar
  45. Liang LF, Keng CL, Lim BP (2006) Selection of cell lines for the production of rosmarinic acid from cell suspension cultures of Orthosiphon Stamineus Benth. In Vitro Cell Dev Biol Plant 42:538–542CrossRefGoogle Scholar
  46. Liu Y, Song L, Yu W, Hu Y, Ma X, Wu J, Ying Y (2015) Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings. Ind Crops Prod 66:137–143CrossRefGoogle Scholar
  47. Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10 hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441CrossRefPubMedGoogle Scholar
  48. Luo J, Yu F, Liu L, CD W, Mei XG (2001) Effect of dissolved oxygen on the suspension culture of Taxus chinensis. Sheng Wu Gong Cheng Xue Bao 17:215–217PubMedGoogle Scholar
  49. Malik S, Mirjalili MH, Fett-Neto AG, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33:1–22CrossRefPubMedGoogle Scholar
  50. Martin KP, Zhang CL, Hembrom ME, Slater A, Madassery J (2008) Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an anticancer drug) and rapid propagation. Plant Biotechnol Rep 2:163–169CrossRefGoogle Scholar
  51. Mirjalili N, Linden JC (1995) Gas phase composition effects on suspension cultures of Taxus cuspidate. Biotechnol Bioeng 48:123–132CrossRefPubMedGoogle Scholar
  52. Miura Y, Hirata K, Kurano N, Miyamoto K, Uchida K (1988) Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med 54:18–20CrossRefPubMedGoogle Scholar
  53. Mohammad Parast B, Rustaiee AR, Rasouli M, Zardari S, Agrawal V (2014) In vitro enhancement of psoralen as an important anticancer compound in Psoralea corylifolia L. through precursor feeding. Pharm Biol 21:1–4Google Scholar
  54. Moreno PR, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 42:1–25CrossRefGoogle Scholar
  55. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16CrossRefGoogle Scholar
  56. Nahalka J, Blaarik P, Gemeiner P, Matusova F, Iova P (1996) Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum, Link. J Biotechnol 49:153–161CrossRefGoogle Scholar
  57. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacog Rev 1:69–79Google Scholar
  58. Namdeo AG, Priya T, Bhosale BB (2012) Micropropagation and production of camptothecin form in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed 2:662–666CrossRefGoogle Scholar
  59. Navia-Osorio A, Garden H, Cusido RM, Palazon J, Alfermann AW, Pinol MT (2002) Taxol® and baccatin III production in suspension cultures of Taxus baccata and Taxus wallichiana in an airlift bioreactor. J Plant Physiol 159:97–102CrossRefGoogle Scholar
  60. Neumann D, Kraus G, Heike M, Gröger D (1983) Indole alkaloid formation and storage in cell suspension cultures of C. roseus. Planta Med 48:20–23CrossRefPubMedGoogle Scholar
  61. Nissen NI, Larsen V, Pedersen H, Thomsen K (1972) Phase I clinical trial of new antitumor agent, 4′ -dimethylepipodophyllotoxin 9-(4,6-0-ethylidine-J1-D-glucopyranoside) (NSC-14154O; VP- 16-213). Cancer Chemother Rep 56:769–777PubMedGoogle Scholar
  62. Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149–158CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pavao MC, Chin CK, Pedersen H (1996) Taxol partitioning in two-phase plant cell cultures of Taxus brevifolia. J Biotechnol 49:95–100CrossRefGoogle Scholar
  64. Prakash L, Middha SK, Mohanty SK, Swamy MK (2016) Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC. 3Biotech 6:171.  https://doi.org/10.1007/s13205-016-00-y CrossRefGoogle Scholar
  65. Praveen N, Manohar SH, Naik PM, Nayeem A, Jeong JH, Murthy HN (2009) Production of andrographolide from adventitious root cultures of Andrographis paniculata. Curr Sci 96:694–697Google Scholar
  66. Rajesh M, Sivanandhan G, Arun M, Vasudevan V, Theboral J, Girija S, Manickavasagam M, Selvaraj N, Ganapathi A (2014) Factors influencing podophyllotoxin production in adventitious root culture of Podophyllum hexandrum Royle. Acta Physiol Plant 36:1009–1021CrossRefGoogle Scholar
  67. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolties. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  68. Remotti PC, Löffler HJM, van Vloten-Doting L (1997) Selection of celllines and regeneration of plants resistant to fusaric acid from Gladiolus × grandiflorus cv. Bpeter pears. Euphytica 96:237–245CrossRefGoogle Scholar
  69. Roja G (1994) Biotechnology of indigenous medicinal plants. PhD thesis, Mumbai University, Mumbai, IndiaGoogle Scholar
  70. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271CrossRefGoogle Scholar
  71. Samadi A, Jafari M, Nejhad NM, Hossenian F (2014) Podophyllotoxin and 6-methoxy podophyllotoxin production in hairy root cultures of Liunm mucronatum sp. mucronatum. Pharmacogn Mag 10:154–160CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106:445–454CrossRefGoogle Scholar
  73. Shiba T, Mii M (2005) Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis. Plant Cell Rep 24:572–580CrossRefPubMedGoogle Scholar
  74. Shiv SP, Suchetha S, Vivek Babu CS, Karuna S, Srivastava NK, Ashutosh KS, Alok K (2016) Fungal endophytes of Catharathus roseus enhance vidoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583CrossRefGoogle Scholar
  75. Silja PK, Satheeshkumar K (2015) Establishment of adventitious root cultures from leaf explants of Plumbago rosea and enhanced plumbagin production through elicitation. Indust Crop Prod 76:479–486CrossRefGoogle Scholar
  76. Silja PK, Gisha GP, Satheeshkumar K (2014) Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tissue Organ Cult 119:469–477CrossRefGoogle Scholar
  77. Siu K, Wu J (2014) Enhanced release of tanshinones and phenolics by nonionic surfactants from Salvia miltiorrhiza hairy roots. Eng Life Sci 14:685–690CrossRefGoogle Scholar
  78. Somasundaram A, Karthikeyan R, Velmurugan V, Dhandapani B, Raja M (2010) Evaluation of hepatoprotective activity of Kyllinga nemoralis (Hutch and Dalz) rhizomes. J Ethnopharmacol 127:555–557CrossRefPubMedGoogle Scholar
  79. Srinivasan V, Pestchanker L, Moser S, Hirasuma T, Taticek RA, Shuler ML (1995) Taxol production in bioreactors; kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata. Biotechnol Bioeng 47:666–676CrossRefPubMedGoogle Scholar
  80. Sudo H, Yamakawa T, Mami Y, Norio A, Kazuki S (2002) Bioreactor production of camptothecin by root cultures of Ophiorrhiza pumila. Biotechnol Lett 24:359–363CrossRefGoogle Scholar
  81. Trejo-Tapia G, Cuevas-Celis J, Salcedo-Morales G, Trejo-Espino JL, Arenas-Ocampo ML, Jimenez-Aparicio A (2007) Beta vulgaris L. suspension cultures permeabilized with triton X-100 retain cell viability and betacyanines production ability: a digital image analysis study. Biotechnol Prog 23:359–363CrossRefPubMedGoogle Scholar
  82. Uden van W, Pras N, Batterman S, Viser JF, Malingre TM (1990) The accumulation and isolation of coniferin from a high producing cell suspension of Linum flavum L. Planta 183:25–30CrossRefGoogle Scholar
  83. Valletta A, Santamaria AR, Pasqua G (2007) CPT accumulation in the fruit and during early phases of plant development in Camptotheca acuminata Decaisne (Nyssaceae). Nat Prod Res 21:1248–1255CrossRefPubMedGoogle Scholar
  84. van der Heijden R, Verpoorte R, Ten Hoopen HJ (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tissue Organ Cult 18:231–280CrossRefGoogle Scholar
  85. Vineesh VR, Fijesh PV, Louis CJ, Jaimsha VK, Padikkala J (2007) In vitro production of camptothecin (an anticancer drug) through albino plants of Ophiorrhiza rugosa var. decumbens. Curr Sci 92:1216–1218Google Scholar
  86. Wang Y, Weathers PJ (2007) Sugars proportionately affect artemisinin production. Plant Cell Rep 26:1073–1081CrossRefPubMedGoogle Scholar
  87. Wang HQ, JT Y, Zhong JJ (1999) Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy. Process Biochem 35:479–483CrossRefGoogle Scholar
  88. Wang C, Wu J, Mei X (2001) Enhanced Taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding. Biotechnol Prog 17:89–94CrossRefPubMedGoogle Scholar
  89. Wang YD, Yuan YJ, JC W (2004) Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var. mairei. Biochem Eng J 19:259–265CrossRefGoogle Scholar
  90. Whitmer S, Verpoorte R, Canel C (1998) Influence of auxins on alkaloid accumulation by a transgenic cell line of Catharanthus roseus. Plant Cell Tissue Organ Cult 53:135–141CrossRefGoogle Scholar
  91. Wildi E, Wildi R and Ripplinger P (2003) Device for cultivating plant or animal tissue cultures. US Patent No. US /0129743A1Google Scholar
  92. Woerdenbag HJ, Van Uden W, Frijlink HW, Lerk CF, Pras N, Malingre TM (1990) Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β -cyclodextrin complex. Plant Cell Rep 9:97–100CrossRefPubMedGoogle Scholar
  93. Woo DDL, Miao SYP, Pelayo JC, Woolf AS (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368:750–753CrossRefPubMedGoogle Scholar
  94. Yang SJ, Fang JM, Cheng YS (1999) Lignans, flavonoids and phenolic derivatives from Taxus mairei. J Chin Chem Soc 46:811–818CrossRefGoogle Scholar
  95. Yang Y, Pu X, Qu X, Chen F, Zhang G, Luo Y (2017) Enhanced production of camptothecin and biological preparation of N1-acetylkynuramine in Camptotheca acuminata cell suspension cultures. Appl Microbiol Biotechnol 101:1–10CrossRefGoogle Scholar
  96. Yukimune Y, Hara Y, Nomura E, Seto H, Yoshida S (2000) The configuration of methyl jasmonate affects paclitaxel and baccatin III production in Taxus cells. Phytochemistry 54:13–17CrossRefPubMedGoogle Scholar
  97. Zhiri A, Jaziri M, Homes J, Vanhaelen M, Shimomura K (1994) Factors affecting the in vitro rapid germination of Taxus embryos and the evaluation of taxol content in plantlets. Plant Cell Tissue Organ Cult 39:261–263CrossRefGoogle Scholar
  98. Zhong JJ, Tatsuji S, Kinoshita SI, Toshiomi Y (1992) Production of red pigments by Perilla frutescens cells in bioreactors. In: Biochemical engineering for 200. Springer, Tokyo, pp 262–265Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hari Gajula
    • 1
  • Kumar Vadlapudi
    • 1
  • Poornima D. Vijendra
    • 1
  • J. Rajashekar
    • 1
  • Torankumar Sannabommaji
    • 1
  • Giridhara Basappa
    • 1
  • T. U. Santhosh
    • 1
  1. 1.Department of BiochemistryDavangere UniversityDavangereIndia

Personalised recommendations