Xylooligosaccharides and Their Anticancer Potential: An Update

  • Praveen Kumar GuptaEmail author
  • Pushpa Agrawal
  • Prabha Hedge
  • Mohd Sayeed AkhtarEmail author


Xylooligosaccharides (XOS), which are sugar oligomers that consist of 2–10 units of xylose, are non-digestible food ingredients produced mainly by the hydrolysis of xylan. The production of XOS from agricultural residues serves as a good source of products for the nutraceutical and pharmaceutical industries. XOS have a characteristic prebiotic effect, promoting the growth of probiotic organisms. XOS affect various physiological functions, such as reducing cholesterol levels, maintaining gastrointestinal health, and improving immunity. XOS are also used as potential anticancer agents, mainly for breast cancer and colon cancer. In this chapter we highlight the role of XOS as prebiotics, as well as their role in the suppression of carcinoma cells.


XOS HCT-116 cells IC50 MCF-7 MTT assay Nutraceuticals Prebiotics Xylan 



The authors thank the Rashtreeya Sikshana Samithi Trust (RSST) Bangalore for their kind support.


  1. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci 10:2–16CrossRefGoogle Scholar
  2. Akpinar O, Erdogan K, Bostanci S (2009) Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod Process 87:145–151CrossRefGoogle Scholar
  3. Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, Bakalova R, Uemura Y, Hatate Y (2004) Hot-compressed water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro 18:765–771CrossRefPubMedGoogle Scholar
  4. Candurra NA, Maskin L, Damonte EB (1996) Inhibition of Arenavirus multiplication in vitro by phenothiazines. Antivir Res 31:149–158CrossRefPubMedGoogle Scholar
  5. Canilha L, de Almeida e Silva JB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with active charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 39:1909–1912CrossRefGoogle Scholar
  6. Chandrasekhariah M, Thulasi A, Sampath KT, Prasad CS, Samanta AK, Kolte AP (2007) Prebiotics: the rumen modulator for enhancing the productivity of dairy animals. Indian Dairyman 59:58–61Google Scholar
  7. Cipriani TR, Mellinger CG, De Souza LM, Baggio CH, Freitas CS, Marques MC, Gorin PA, Sassaki GL, Iacomini M (2006) A polysaccharide from a tea (infusion) of Maytenus ilicifolia leaves with anti-ulcer protective effects. J Nat Prod 69:1018–1021CrossRefPubMedGoogle Scholar
  8. Crittenden RG (2006) Emerging prebiotic candidates. In: Gibson GR, Rastall RA (eds) Prebiotics: development and application. Wiley, West SussexGoogle Scholar
  9. Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:S415–S420CrossRefGoogle Scholar
  10. da Silva AE, Marcelino HR, Gomes MCS, Oliveira EE, Nagashima T Jr, Egito EST (2012) Xylan, a promising hemicellulose for pharmaceutical use, products and applications of biopolymers (Verbeek J (ed)). InTech, Available from: ISBN:978-953-51-0226-7
  11. Damonte EB, Matulewicz MC, Cerezo AS, Coto CE (1996) Herpes simplex virus-inhibitory sulfated xylogalactans from the red seaweed Nothogenia fastigiata. Chemotherapy 42:57–64CrossRefPubMedGoogle Scholar
  12. Ebringerova A, Hromadkova Z (1999) Xylans of industrial and biomedical importance. Biotechnol Genet Eng Rev 16:325–346CrossRefPubMedGoogle Scholar
  13. Ensminger AH, Ensminger ME, Kondale JE, Robson JRK (1983) Foods and nutriton encyclopedia. Pegasus Press, ClovisGoogle Scholar
  14. Fang JM, Sun RC, Tomkinson J, Fowler O (2000) Acetylation of wheat straw hemicelluloses B in a new non-aqueous swelling system. Carbohydr Polym 41:379–387CrossRefGoogle Scholar
  15. Food that act as natural medicine (2015) February 13. Retrieved from
  16. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:257–259CrossRefGoogle Scholar
  17. Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic sub cellular fractions for alamar blue and MTT reductase activity. Toxicol In Vitro 15:259–259CrossRefGoogle Scholar
  18. Graf D, Di Cagno R, Fak F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:PMC4318938. CrossRefGoogle Scholar
  19. Grohmann K, Cameron RG, Buslig BS (1995) Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour Technol 54:129–141CrossRefGoogle Scholar
  20. Gupta PK, Agrawal P, Hedge P (2012) A review on xylooligosaccharides. Int Res J Pharm 3:71–74Google Scholar
  21. Gupta PK, Agrawal P, Hedge P (2015) Extraction of xylooligosaccharides by using Aspergillus niger from orange wastes. Int J Pharm Tech Res 7:488–496Google Scholar
  22. Gupta PK, Agrawal P, Hedge P (2017) Value addition of orange fruit wastes in the enzymatic production of xylooligosaccharides. Afr J Biotechnol 16:1324–1330CrossRefGoogle Scholar
  23. Hattori N, Sakakibara T, Kajiyama N, Igarashi T, Maeda M, Murakami S (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal Biochem 319:287–295CrossRefPubMedGoogle Scholar
  24. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  25. Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructo-oligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528CrossRefPubMedGoogle Scholar
  26. Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17:770–775CrossRefGoogle Scholar
  27. Huebner J, Wehling RL, Parkhurst A, Hutkins RW (2008) Effect of processing conditions on the prebiotic activity of commercial prebiotics. Int Dairy J 18:287–293CrossRefGoogle Scholar
  28. Kardosova A, Malovikova A, Patoprsty V, Nosalova G, Matakova T (2002) Structural characterization and antitussive activity of a glucuronoxylan from Mahonia aquifolium (Pursh). Carbohydrate. Polymer 47:27–33Google Scholar
  29. Kitamura S, Hori T, Kurita K, Takeo K, Hara C, Itoh W, Tabata K, Elgsaeter A, Stokked BT (1994) An antitumor, branched (1→3)-β-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr Res 263:111–121CrossRefPubMedGoogle Scholar
  30. Kulicke WM, Lettau AI, Thielking H (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-D-glucans. Carbohydr Res 297:135–143CrossRefPubMedGoogle Scholar
  31. Leach JD (2007) Prebiotics in ancient diets. Food Sci Technol Bull Funct Foods 4:1–8CrossRefGoogle Scholar
  32. Ma E, Cervera Q, Mejía Sánchez GM (1993) Integrated utilization of orange peel. Bioresour Technol 44:61–63CrossRefGoogle Scholar
  33. Maeda R, Ida T, Ihara H, Sakamota T (2012) Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. Biosci Biotechnol Biochem 76:501–505CrossRefPubMedGoogle Scholar
  34. Manisseri C, Gudipati M (2010) Bioactive xylooligosaccharides from wheat bran soluble polysaccharides. LWT-Food Sci Technol 43:421–430CrossRefGoogle Scholar
  35. Modler HW (1994) Bifidogenic factors-source, metabolism and applications. Int Dairy J 4:383–407CrossRefGoogle Scholar
  36. Moure A, Estevez GP, Dominguez H, Parajo JC (2006) Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923CrossRefGoogle Scholar
  37. Nyangale EP, Mottram DS, Gibson GR (2012) Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res 11:5573–5585CrossRefPubMedGoogle Scholar
  38. Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylooligosaccharide on the growth of bifidobacteria. J Jpn Soc Nutr Food Sci 43:395–401CrossRefGoogle Scholar
  39. Oku T, Nakamura S (2002) Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl Chem 74:1253–1261CrossRefGoogle Scholar
  40. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903CrossRefPubMedGoogle Scholar
  41. Rashad MM, Mahmoud AE, Nooman MU, Mahmoud HA, ElTorky AEM, Keshta AT (2016) Production of antioxidant xylooligosaccharides from lignocellulosic materials using Bacillus amyloliquifaciens NRRL B-14393 xylanase. J App Pharm Sci 6(06):030–036Google Scholar
  42. Rivas B, Torrado A, Torre P, Converti A, Dominguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387CrossRefPubMedGoogle Scholar
  43. Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liv Dis 34:S105–S110CrossRefGoogle Scholar
  44. Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Forum Nutr 3:118–134Google Scholar
  45. Samanta AK, Senani S, Kolte AP, Sridhar M, Jayapal N (2010) Applications of prebiotics in poultry. Agrovet Buzz 3:38–42Google Scholar
  46. Samanta AK, Kolte AP, Senani SS, Sridhar M, Jayapal N (2011) Prebiotics in ancient Indian diets. Curr Sci 101:43–46Google Scholar
  47. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205CrossRefPubMedGoogle Scholar
  48. Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M. (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre 5(1):62–71CrossRefGoogle Scholar
  49. Seidner DL, Lashner BA, Brzezinski A, Banks PL, Goldblum J, Fiocchi C, Katz J, Lichtenstein GR, Anton PA, Kam LY, Garleb KA, Demichele SJ (2005) An oral supplement enriched with fish oil, soluble fiber, and antioxidants for corticosteroid sparing in ulcerative colitis: a randomized, controlled trial. Clin Gastroenterol Hepatol 3:358–369CrossRefPubMedGoogle Scholar
  50. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228. ISSN 1369-5274CrossRefPubMedGoogle Scholar
  51. Shimoda K, Hamada H, Hamada H (2011) Synthesis of xylooligosaccharides of daidzein and their antioxidant and anti-allergic activities. Int J Mol Sci 12:5616–5625CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sixta H et al. (2006) Chemical pulping process, In: Sixta H (ed) Handbook of pulp, Xylan structure, vol. 1. wileyvch, Yikrazuul, pp 325–365.
  53. Stone AL, Melton DJ, Lewis MS (1998) Structure-function relations of heparin-mimetic sulfated xylan oligosaccharides: inhibition of human immuno deficiency virus-1 infectivity in vitro. Glycoconj J 15:697–712CrossRefPubMedGoogle Scholar
  54. Stowell J (2007) Calorie control and weight management. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell Publishing, OxfordGoogle Scholar
  55. USDA (2010) Nutrient database for standard reference. Accessed 19 Aug 2017
  56. Vazquez MJ, Alonso JL, Dominguez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trend Food Sci Technol 11:387–393CrossRefGoogle Scholar
  57. Watson K, Gooderham NJ, Davies DS, Edwards RJ (1999) Interaction of the transactivating protein HIV-1 tat with sulphated polysaccharides. Biochem Pharmacol 57:775–783CrossRefPubMedGoogle Scholar
  58. Zhou E, Pan X, Tian X (2009) Application study of xylooligosaccharide in layer production. Mod Appl Sci 3:103–107Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyR.V. College of EngineeringBangaloreIndia
  2. 2.Department of BotanyGandhi Faiz-e-Aam CollegeShahjahanpurIndia

Personalised recommendations