Fungal Endophytes as Novel Sources of Anticancer Compounds

  • Kashyapi Chakravarty
  • Smriti GaurEmail author


There has been an exponential rise in the world population having numerous health ailments as a result of carcinogens causing cancer. Therefore, newer arenas to combat this issue are being continuously explored, and endophytes constitute one such source of potential anticancer agents. Endophytes are microbes residing in viable plant tissues consisting of potential, substantial sources of natural bioactive agents. Endophytic fungi reside within the tissues of higher plants without causing any harmful symptoms. The anticancer activities displayed by these microbes against specific cancer cells have been due to the cytotoxic effects of their bioactive compounds. These organisms have been comparatively less explored, and their use in the pharmaceutical industry holds significant promise. Fungal endophytes form a reliable source of important secondary metabolites by employment of their biotransformation processes. They employ specific mechanisms by which they penetrate the tissues of host plants and live in mutualistic association with the plants. They can be genetically and physico-chemically modified to obtain higher yields of specific metabolites of interest. Unique analogues of active metabolites can also be generated using fungal endophytes. A critical balance maintained between the virulence by a fungal endophyte and the defence mechanism of the plant, by the release of endophytic metabolites, helps in sustaining its competition with plant pathogens and epiphytes. Therefore, the aim of this chapter is to highlight the new arena of research on fungal endophytes producing novel anticancer metabolites. Insights into this research would ultimately help in the production of safe, reliable and economical anticancer drugs.


Anticancer compounds Camptothecin Cancer Fungal endophytes Taxol 


  1. Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116CrossRefPubMedGoogle Scholar
  2. Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569CrossRefPubMedGoogle Scholar
  3. Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175CrossRefGoogle Scholar
  4. Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential biprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98CrossRefGoogle Scholar
  5. Barrios-González J, Fernandez F, Tomasini A, Mejia A (2005) Secondary metabolites production by solid state fermentation. Malays J Microbiol 1:1–6Google Scholar
  6. Berit BT, Rolf B (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. BBA Rev Cancer 1775:283–297Google Scholar
  7. Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed 46:945–952CrossRefGoogle Scholar
  8. Bungihan ME, Tan MA, Takayama H, Cruz DE, Nonato GM (2013) A new macrolide isolated from the endophytic fungus Colletotrichum sp. Phil Sci Lett 6:57–73Google Scholar
  9. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59CrossRefPubMedGoogle Scholar
  10. Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1191–1205CrossRefGoogle Scholar
  11. Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Han T, Qin LP, Han T (2016) Endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol 42:454–473PubMedGoogle Scholar
  12. Couto SR, Toca-Herrera JL (2007) Lactase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569CrossRefPubMedGoogle Scholar
  13. Croce CM (2008) Oncogenes and cancer. New Eng J Med 358:502–511CrossRefPubMedGoogle Scholar
  14. Davis RA, Carroll AR, Andrews KT, Boyle GM, Tran TL, Healy PC, Kalaitzis JA, Shivas RG (2010) Pestalactams A–C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8:1785–1790CrossRefPubMedGoogle Scholar
  15. De Bary A (1866) Morphologie und physiologie der plize, Flechten, und Myxomyceten. In: Hofmeister’s hand book of physiological botany, vol 2. Engelmann, LeipzigGoogle Scholar
  16. Deng CM, Liu SX, Huang CH, Pang JY, Lin YC (2013) Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar Drugs 11:2616–2624CrossRefPubMedPubMedCentralGoogle Scholar
  17. Di Luccio M, Capra F, Ribeiro NP, Vargas GD, Freire DM, De Oliveira D (2004) Effect of temperature, moisture, and carbon supplementation on lipase production by solid state fermentation of soy cake by Penicillium simplicissimum. Appl Biochem Biotechnol 113:173–180CrossRefPubMedGoogle Scholar
  18. Ding G, Wang H, Li L, Chen AJ, Chen L, Chen H, Zhang H, Liu X, Zou Z (2012) Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur J Org Chem 2012:2516–2519CrossRefGoogle Scholar
  19. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091CrossRefPubMedPubMedCentralGoogle Scholar
  20. El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, Saad HEA, Lai D, Proksch P (2013) Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod 76:1099–1104CrossRefPubMedGoogle Scholar
  21. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767CrossRefGoogle Scholar
  22. Gao SS, Li XM, Li CS, Proksch P, Wang BG (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21:2894–2897CrossRefPubMedGoogle Scholar
  23. Ge HL, Zhang DW, Li L, Xie D, Zou JH, Si YK, Dai J (2011) Two new terpenoids from endophytic fungus Periconia sp. F-31. Chem Pharm Bull 59:1541–1544CrossRefPubMedGoogle Scholar
  24. Gulland A (2014) Global cancer prevalence is growing at “alarming pace,” says WHO. BMJ 348:G1338CrossRefPubMedGoogle Scholar
  25. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hölker U, Lenz J (2005) Solid-state fermentation–are there any biotechnological advantages. Curr Opin Microbiol 8:301–306CrossRefPubMedGoogle Scholar
  27. Huang CH, Pan JH, Chen B, Yu M, Huang HB, Zhu X, YJ L, She ZG, Lin YC (2011a) Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar Drugs 9:832–843CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huang HB, Xiao ZE, Feng XJ, Huang CH, Zhu X, JH J, Li MF, Lin YC, Liu L, She ZG (2011b) Cytotoxic naphthog-pyrones from the Mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). Helv Chim Acta 94:1732–1740CrossRefGoogle Scholar
  29. Huang Z, Yang J, Cai X, She Z, Lin Y (2012) A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat Prod Res 26:1291–1295CrossRefPubMedGoogle Scholar
  30. Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci 98:13595–13600CrossRefPubMedGoogle Scholar
  31. Kala CP (2000) Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biol Conserv 93:371–379CrossRefGoogle Scholar
  32. Kang JC, Hyde KD, Kong RY (1999) Studies on Amphisphaeriales: the Amphisphaeriaceae (sensu stricto). Mycol Res 103:53–64CrossRefGoogle Scholar
  33. Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 95:228–233Google Scholar
  34. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228CrossRefPubMedGoogle Scholar
  35. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162CrossRefPubMedGoogle Scholar
  36. Li YC, Tao WY, Cheng L (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239CrossRefPubMedGoogle Scholar
  37. Li H, Huang H, Shao C, Huang H, Jiang J, Zhu X, Liu Y, Liu L, Lu Y, Li M, Lin Y (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235CrossRefPubMedGoogle Scholar
  38. Li X, Tian Y, Yang SX, Zhang YM, Qin JC (2013) Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1. Bioorg Med Chem Lett 23:2945–2947CrossRefPubMedGoogle Scholar
  39. Lin T, Lin X, CH L, Shen YM (2011) Three new triterpenes from Xylarialean sp. A45, an endophytic fungus from Annona squamosa L. Helv Chim Acta 94:301–305CrossRefGoogle Scholar
  40. Liu D, Li XM, Meng L, Li CS, Gao SS, Shang Z, Proksch P, Huang CG, Wang BG (2011a) Nigerapyrones A–H, a-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J Nat Prod 74:1787–1791CrossRefPubMedGoogle Scholar
  41. Liu SC, Ye X, Guo LD, Liu L (2011b) Cytotoxic isoprenylated epoxycyclohexanediols from the plant endophyte Pestalotiopsis fici. Chin J Nat Med 9:374–379Google Scholar
  42. Liu S, Guo L, Che Y, Liu L (2013) Pestaloficiols Q–S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118CrossRefPubMedGoogle Scholar
  43. Lu S, Sun P, Li T, Kurtán T, Mándi A, Antus S, Krohn K, Draeger S, Schulz B, Yi Y, Li L (2011) Bioactive nonanolide derivatives isolated from the endophytic fungus Cytospora sp. J Org Chem 76:9699–9710CrossRefPubMedGoogle Scholar
  44. Luo J, Liu X, Li E, Guo L, Che Y (2013) Arundinols A–C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. J Nat Prod 76:107–112CrossRefPubMedGoogle Scholar
  45. Mbaveng AT, Kuete V, Mapunya BM, Beng VP, Nkengfack AE, Meyer JJM, Lall N (2011) Evaluation of four Cameroonian medicinal plants for anticancer, antigonorrheal and antireverse transcriptase activities. Environ Toxicol Pharm 32:162–167Google Scholar
  46. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225CrossRefGoogle Scholar
  47. Nadeem M, Mauji R, Pravej A, Ahmad MM, Mohammad A, Qurainy FA, Khan S, Abdin MZ (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6:2493–2499Google Scholar
  48. Nygren P, Larsson R (2003) Overview of the clinical efficacy of investigational anticancer drugs. J Int Med 253:46–75CrossRefGoogle Scholar
  49. Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78CrossRefPubMedGoogle Scholar
  50. Ortega HE, Graupner PR, Asai Y, TenDyke K, Qiu D, Shen YY, Rios N, Arnold AE, Coley PD, Kursar TA, Gerwick WH (2013) Mycoleptodiscus A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. J Nat Prod 76:741–744CrossRefPubMedGoogle Scholar
  51. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  52. Penalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. Trends Biotechnol 16:483CrossRefPubMedGoogle Scholar
  53. Petrini O, Fisher P (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080CrossRefGoogle Scholar
  54. Preeti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Shaanker RU (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:477–478Google Scholar
  55. Raghavarao K, Ranganathan T, Karanth N (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135CrossRefGoogle Scholar
  56. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  57. Saunders M, Kohn LM (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238CrossRefPubMedGoogle Scholar
  58. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  59. Shiono Y, Kikuchi M, Koseki T, Murayama T, Kwon E, Aburai N, Kimura KI (2011) Isopimarane diterpene glycosides, isolated from endophytic fungus Paraconiothyrium sp. MY-42. Phytochemistry 72:1400–1405CrossRefPubMedGoogle Scholar
  60. Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122CrossRefPubMedGoogle Scholar
  61. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentate Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342CrossRefGoogle Scholar
  62. Sommart U, Rukachaisirikul V, Trisuwan K, Tadpetch K, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Tricycloalternarene derivatives from the endophytic fungus Guignardia bidwellii PSU-G11. Phytochem Lett 5:139–143CrossRefGoogle Scholar
  63. Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SP (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908CrossRefPubMedGoogle Scholar
  64. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  65. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefPubMedGoogle Scholar
  66. Swamy MK, Akhtar MS, Sinniah UR (2016) Response of PGPR and AM Fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes: mechanisms and molecular interactions. Springer International Publishing, Cham, pp 145–168CrossRefGoogle Scholar
  67. Tan RX, Zhou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefGoogle Scholar
  68. Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and antiinvasive potential via the inhibition of NF-kB activity. Bioorgan Med Chem 21:3850–3858CrossRefGoogle Scholar
  69. Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Ven S (2007) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím Méx 1:19–26Google Scholar
  70. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRefGoogle Scholar
  71. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefGoogle Scholar
  72. Verza M, Arakawa NS, Lope NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignin by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200CrossRefGoogle Scholar
  73. Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215CrossRefGoogle Scholar
  74. Wang WL, Lu Z, Tao HW, Zhu TJ, Fang YC, QQ G, Zhu WM (2007) Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. J Nat Prod 70:1558–1564CrossRefPubMedGoogle Scholar
  75. Wang FW, Ye YH, Ding H, Chen YX, Tan RX, Song YC (2010) Benzophenones from Guignardia sp. IFB-E028, an Endophyte on Hopea hainanensis. Chem Biodivers 7:216–220CrossRefPubMedGoogle Scholar
  76. Wang QX, Li SF, Zhao F, Dai HQ, Bao L, Ding R, Gao H, Zhang LX, Wen HA, Liu HW (2011a) Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia 82:777–781CrossRefPubMedGoogle Scholar
  77. Wang XN, Bashyal BP, Wijeratne EK, UˈRen JM, Liu MX, Gunatilaka MK, Arnold AE, Gunatilaka AL (2011b) Smardaesidins A–G, Isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J Nat Prod 74:2052–2061CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X (2012) Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 19:364–368CrossRefPubMedGoogle Scholar
  79. Wiseman H, Kaur H, Halliwell B (1995) DNA damage and cancer: measurement and mechanism. Cancer Lett 93:113–120CrossRefPubMedGoogle Scholar
  80. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113CrossRefPubMedGoogle Scholar
  81. Wu ZC, Li DL, Chen YC, Zhang WM (2010) A new isofuranonaphthalenone and Benzopyrans from the endophytic fungus Nodulisporium sp. A4 from Aquilaria sinensis. Helv Chim Acta 93:920–924CrossRefGoogle Scholar
  82. Xie GE, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, Yuan J (2010) SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yan HJ, Li XM, Li CS, Wang BG (2012) Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv Chim Acta 95:163–168CrossRefGoogle Scholar
  84. Ying YM, Shan WG, Zhang LW, Zhan ZJ (2013) Ceriponols A–K, tremulane sesquitepenes from Ceriporia lacerate HS-ZJUTC13A, a fungal endophyte of Huperzia serrata. Phytochemistry 95:360–367CrossRefPubMedGoogle Scholar
  85. Yuan G, Hong K, Lin H, She Z, Li J (2013) New azalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar Drugs 11:817–829CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefPubMedGoogle Scholar
  87. Zhang HC, Liu JM, HY L, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213CrossRefPubMedGoogle Scholar
  88. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168CrossRefPubMedGoogle Scholar
  89. Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.) J Appl Microbiol 115:102–113CrossRefPubMedGoogle Scholar
  90. Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68(10):4863–4870CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations