Modeling Soil Erosion by Water

  • M. K. Hardaha


Soil erosion is a natural process that occurs when the force of wind, raindrops or running water on the soil surface exceeds the cohesive forces that bind the soil together. In general, vegetation cover protects the soil from the effects of these erosive forces. However, land management activities such as ploughing, burning and heavy grazing may disturb this protective layer, exposing the underlying soil. About 1 billion hectares of land in the world is estimated to be eroded by water. Water erosion is resulted due to dispersive and transporting power of the water, as is evident from splash erosion where first of all the soil particles are detached from the soil surface by the action of raindrop and then transported with surface runoff. There is a direct relationship between the soil loss and runoff volume. There are many climatic and biotic factors responsible for soil erosion. Many erosion process models are available and used to estimate various soil erosion parameters. Their use depends upon the data required in the model and the data available. In the present chapter, some of these models such as the Universal Soil Loss Equation, Soil Loss Equation Model for South Africa, Soil Loss Equation Model for Mediterranean Region, Modified Universal Soil Loss Equation, Morgan-Morgan-Finney Model, Quasi-Three-Dimensional Runoff Model and Limburg Soil Erosion Model (LISEM) are discussed.


  1. Babu R, Tejwani KG, Agrawal MC, Bhusan IS (1978) Determination of erosion index and isoerodent map of India. Indian J Soil Conserv 6(1):1–12Google Scholar
  2. Beasley DB (1977) Answers: a mathematical model for simulating the effects of land use and management on water quality. Unpublished PhD. thesis. Purdue University, West Lafayette. 266 ppGoogle Scholar
  3. Beven KJ, Kirby MJ, Schoffield N, Tagge A (1984) Testing a physically-based flood forecasting model TOPMODEL for three UK catchments. J Hydrol 69:119–143CrossRefGoogle Scholar
  4. Bhargav KS (1999) A modified SLEMSA model for Naurar sub-catchment of Ramganga river. Unpublished master’s thesis. Submitted to GBPAUT, PantnagarGoogle Scholar
  5. Carling PA, Glaister MS, Flintham TP (1993) Soil erosion and conservation on land cultivated and drained for afforestation. Hydrol Process 7:317–333CrossRefGoogle Scholar
  6. Das G (2000) Hydrology and soil conservation engineering. Prentice Hall of India, New DelhiGoogle Scholar
  7. Das G, Chouhan HS (1990) Sediment routing for mountainous Himalayan region. Trans ASAEGoogle Scholar
  8. De Jong SM (1997) DeMon – satellite based desertification monitoring in the Mediterranean Basin.
  9. De Roo APJ (1998) Modelling runoff and sediment transport in catchments using GIS. Hydrol Process 12:905–922CrossRefGoogle Scholar
  10. De Roo APJ, Offermans RJE, Cremers NHDT (1996) LISEM: a single event physically based hydrological and soil erosion model for drainage basins: I theory, input and output. Hydrol Process 10:1119–1126CrossRefGoogle Scholar
  11. De Roo APJ, Wesseling CG, Cremers NHDT, Offermans RJE, Ritsema CJ, van Oostindie K (2001) Lisem: a physically-based hydrological and soil erosion model incorporated in a gis.
  12. Victor Demidov (2001) Modeling soil erosion and sediment transport on watersheds with the help of quasi three-dimensional runoff model.
  13. Di Stefano C, Ferro V, Porto P (1999) Modelling sediment delivery process by stream tube approach. Hydrol Sci J 44:725–742CrossRefGoogle Scholar
  14. Dickinson WT, Rudra RP, Clark DJ (1986) A delivery ratio approach for seasonal transport of sediment. In: Hadley RF (ed) Drainage basin sediment delivery. Proceedings of the symposium of the international commission on continental erosion. IAHS Publication No. 159, AlberquequeGoogle Scholar
  15. Donigian AS, Huber WC (1991) Modeling of nonpoint source water quality in urban and non-urban areas, EPA/600/3-91/039. US Environment Protection Agency, AthensGoogle Scholar
  16. Elwell HA (1978) Modelling soil loss in southern Africa. J Agric Eng Res 23:111–127CrossRefGoogle Scholar
  17. Elwell HA, Stocking MA (1982) Developing a simple yet practical method of soil loss estimation. Trop Agric 59(1):43–48Google Scholar
  18. Ferro V (1997) Further remarks on a distributed approach to sediment delivery. Hydrol Sci J 42:633–647CrossRefGoogle Scholar
  19. Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J 40:703–717CrossRefGoogle Scholar
  20. Ferro V, Porto P, Tusa G (1998) Testing a distributed approach for modelling sediment delivery. Hydrol Sci J 43:425–442CrossRefGoogle Scholar
  21. Flanagan DC, Nearing MA (1995) USDA-water erosion prediction project: hillslope profile and watershed model documentation, NSERL report No. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette. 47097-1196Google Scholar
  22. Foster GR (1982) Modelling erosion processes. In: Hann CT, Johnson HP, Brakensick DL (eds) Hydrological modeling of a small watershed. American Society of Agricultural Engineers, St Joseph, pp 297–380Google Scholar
  23. Foster GR, Meyer LD, Onstad CA (1977) An erosion equation derived from basic erosion principles. Trans Am Soc Agric Eng 20:678–687CrossRefGoogle Scholar
  24. Foster GR, McCool DR, Renard KG, Mobdenhaur WC (1981) Conversion of universal soil loss equation to SI metric units. J Soil Water Conserv 36:355–359Google Scholar
  25. Govindaraju RS, Kavvas ML (1991) Modeling the erosion process over steep slopes; approximate analytical solutions. J Hydrol 127:279–305CrossRefGoogle Scholar
  26. Hairsine PB, Rose CW (1992a) Modeling water erosion due to overland flow using physical principles: 1, sheet flow. Water Resour Res 28:245–250CrossRefGoogle Scholar
  27. Hairsine PB, Rose CW (1992b) Modeling water erosion due to overland flow using physical principles: 2, rill flow. Water Resour Res 28:237–243CrossRefGoogle Scholar
  28. Hardaha MK, Kale VS, Nema RK (1996) Erosive rains and erosion index for Indore. Indian J Soil Conserv 24(3):193–196Google Scholar
  29. Hession WC, Shanholtz VO (1988) A geographical information system for targeting nonpoint-source agricultural pollution. J Soil Water Conserv 1988:264–266Google Scholar
  30. Jain MK, Kothyari UC (2000) Estimation of sediment yield using a GIS. Hydrol Sci J 45:771–786CrossRefGoogle Scholar
  31. Jetten V, De Roo A, Favis-Mortlock D (1999) Evaluation of field scale and catchment-scale soil erosion models. Catena 37:521–541CrossRefGoogle Scholar
  32. Knisel WG (1980) CREAMS a field scale model for chemical, runoff and erosion from agricultural management system. USDA Conservation Report No. 26Google Scholar
  33. Kothyari UC, Jain SK (1997) Sediment yield estimation using GIS. Hydrol Sci J 42:833–843CrossRefGoogle Scholar
  34. Laflen JM, Lane LJ, Foster GR (1991) WEPP – a new generation of erosion prediction technology. J Soil Water Conserv 46:34–38Google Scholar
  35. Leonard RA, Knisel WG, Still DA (1987) GLEAMS: groundwater loading effects of agricultural management systems. Trans Am Soc Agric Eng 30:1403–1418CrossRefGoogle Scholar
  36. May L, Place C (2005) A GIS-based model of soil erosion and transport. Fresh Water Forum 23:48–61Google Scholar
  37. Meyer LD, Wischmeier WH (1969) Mathematical simulation of the process of soil erosion by water. Trans Am Soc Agric Eng 12:754–758CrossRefGoogle Scholar
  38. Miller CL, Laflamme RA (1958) The digital terrain model – theory and application. Photogramm Eng 24:422–433Google Scholar
  39. Millington AC (1986) Reconnaissance scale soil erosion mapping using a simple geographical information system in the humid tropics. In: Siderius W (ed) Land evaluation for land use planning and conservation in sloping areas, pp. 64–81. International Workshop, Enschede, The Netherlands, 17–21 December 1984Google Scholar
  40. Moore ID, Burch GJ (1986) Modeling erosion and deposition: topographic effects. Trans Am Soc Agric Eng 29:1624–1630CrossRefGoogle Scholar
  41. Moore ID, Gessle PE, Nielson GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452CrossRefGoogle Scholar
  42. Morgan RPC, Morgan DDV, Finney HJ (1984) A predictive model for the assessment of soil erosion. J Agric Eng Res 30:245–253Google Scholar
  43. Moussa R, Bocquillon C (1994) TraPhyC-BV: a hydrologic information system. Environ Softw 9:217–226CrossRefGoogle Scholar
  44. Musgrave GW (1947) The quantitative evaluation of factors in water erosion, a first approximation. J Soil Water Conserv 2:133–138Google Scholar
  45. Nearing MA, Foster GR, Lane LJ, Finkner SC (1989) A process based soil erosion model for USDA water erosion prediction project. Trans ASAE 32(5):1587–1593CrossRefGoogle Scholar
  46. Nearing MA, Lane LJ, Lopes VL (1994) Modeling soil erosion. In: Lal R (ed) Soil erosion research methods. Soil and Water Conservation Society and St. Lucie Press, Ankeny, pp 127–156Google Scholar
  47. O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804CrossRefGoogle Scholar
  48. Oslin AJ, Westsmith RA, Morgan DS (1988) STREAMS: a basin and soil erosion model using CADD remote sensing and GIS to facilitate watershed management. In: Modeling agricultural, forest and rangeland hydrology. American Society of Agricultural Engineers, St Joseph, pp 470–477Google Scholar
  49. Quinn PF, Beven KJ, Lamb R (1995) The ln(α/tanβ) index: how to calculate it and how to use it within the TOPMODEL framework. Hydrol Process 9:161–182CrossRefGoogle Scholar
  50. Rose CW (1994) Research progress on soil erosion processes and a basis for soil conservation practices. In: Lal R (ed) Soil erosion research methods. Soil and Water Conservation Society and St. Lucie Press, Ankeny, pp 159–178Google Scholar
  51. Sharma KD, Correia JF (1987) An upland soil erosion model derived from the basic principles. Earth Surf Process Landf 12:205–210CrossRefGoogle Scholar
  52. Sharma PP, Gupta SC, Foster GR (1995) Raindrop-induced soil detachment and sediment transport from interrill areas. Soil Sci Soc Am J 59:727–734CrossRefGoogle Scholar
  53. Singer MJ, Walker PH (1983) Rainfall-runoff in soil erosion with simulated rainfall, overland flow and cover. Aust J Soil Res 21:109–122CrossRefGoogle Scholar
  54. Singh G, Babu R, Chandra S (1981) Soil loss prediction research in India, Bull T 120/D-9. CSWCR & TI, DehradunGoogle Scholar
  55. Spanner MA (1983) The use of pre-existing digital data base for soil erosion prediction, Proceedings, CERMA Energy Resource Management Conference. CERMA, San FranciscoGoogle Scholar
  56. Tiwari AK, Risse LM, Nearing MA (2000) Evaluation of WEPP and its comparison with USLE and RUSLE. Trans ASAE 43(5):1129–1135CrossRefGoogle Scholar
  57. Vertessy RA, Wilson CJ, Silburn DM, Connolly RD, Ciesiiolka CA (1990) Predicting erosion hazard areas using digital terrain analysis. In: Proceedings IASH/AISH international symposium on research needs and applications to reduce erosion and sedimentation in tropical Stepp land, Suva, Fuji, pp 298–308Google Scholar
  58. Williams JR (1975) Sediment yield prediction with universal equation using runoff energy factor. In: Sediment yield workshop Oxford, Nov.1972. Present and prospective of technology for predicting sediment yield and sources. Proceeding: Oxford, USDA Sedimentation LabGoogle Scholar
  59. Williams JR, Jones CA, Dyke PT (1984) A modelling approach to determining the relationship between erosion and soil productivity. Trans Am Soc Agric Eng 27:129–144CrossRefGoogle Scholar
  60. Wischmeir WH, Smith DD (1965) Predicting rainfall erosion losses from cropland east of the rocky mountains, USDA Handbook No. 282. USDA, Washington, DCGoogle Scholar
  61. Wischmeir WH, Smith DD (1978) Predicting rainfall erosion losses – a guide to conservation planning, USDA Handbook No. 537. USDA, Washington, DCGoogle Scholar
  62. Yamamoto T, Anderson HW (1967) Erodibility indices for wildland soils of Oahu, Hawaii, as related to soil forming factors. Water Resour Res 3:785–798CrossRefGoogle Scholar
  63. Zachar DC (1982) Soil erosion. Scientific Publishing Co, AmsterdamGoogle Scholar
  64. Zhang L, O’Neill AL, Lacey S (1996) Modelling approaches to the prediction of soil erosion in catchments. Environ Softw 11:123–133CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. K. Hardaha
    • 1
  1. 1.Directorate of Extension ServicesJawaharlal Nehru Krishi VishvaVidayalayaJabalpurIndia

Personalised recommendations