Advertisement

A Method of Bio-efficacy Potential of Zooplankton (Copepod) for the Control of Vector Mosquitoes

  • S. Balakrishnan
  • P. Santhanam
  • N. Manickam
  • M. Srinivasan
Chapter

Abstract

Mosquitoes (Diptera: Culicidae) are one of the main threats for many people throughout the world; subsequently they act as vectors for indispensable pathogens for the following infections, malaria, dengue, yellow fever, West Nile, and parasites, such as filariasis (Murugan et al. 2015). Mosquitoes are the most critical group of insects in the context of public health, because they transmit numerous diseases, causing millions of deaths annually. An annual estimation of 390 million cases worldwide, growing incidence and more frequent epidemics, dengue is an increasingly important public health challenge (WHO 2012; Tran et al. 2015). As there is no vaccine or treatment for dengue, prevention and control of this disease depend on vector control to reduce viral transmission (Guzman and Kouri 2002). The key flight path of dengue is Aedes aegypti, a domestic mosquito that rears mostly in artificial water ampoules (Focks et al. 1981). In this situation, mosquito flight path rheostat is a main anticipation thing. In recent times, eco-friendly resistor tackles have been instigated to increase mosquito control. Substantial hard work has been conceded out investigating the efficacy of botanical products, and many plant-borne compounds have been reported as excellent toxins against mosquitoes, acting as adulticidal, larvicidal, ovicidal, oviposition deterrent, growth and/or reproduction inhibitors, and/or adult repellents (Conti et al. 2014; Murugan et al. 2015; Benelli et al. 2015a, b). Marine creatures are a gorgeous home of fundamentally new and biologically active metabolites, and cyclopoid copepods are noticeable predators in lots of aquatic ecosystems and have been acting as biological substitutes in efficacious programs to control mosquito larvae.

Notes

Acknowledgment

The authors thank the authorities of Bharathidasan University for providing the necessary facilities, and the first author thanks the University Grants Commission, Govt. of India, New Delhi, for financial support through UGC-Research Awardee (No. F.30-1/2014 (SA-II)/RA-2014-16-SC-TAM-4364 dated 05/02/2015). Authors give due thanks to the Department of Biotechnology, Govt. of India, New Delhi, for providing microalgae culture facilities through the extramural project (BT/PR 5856/AAQ/3/598/2012).

References

  1. Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.CrossRefGoogle Scholar
  2. Alshammari, A.M., A.S. Alshammari, A.A. Abdelmageed, A.A. Mangoud, N.A. Al Anazi, and F.S. Al-Zahrani. 2015. Effectiveness of copepod, Acanthocyclops vernalis on dengue fever victor, Aedes aegypti under laboratory conditions in Jeddah, Saudi Arabia. Open Journal of Ecology 5: 299–305.CrossRefGoogle Scholar
  3. Altaff, K. 2004. A manual of zooplankton, 19–145. Chennai: Department of Zoology, The New College.Google Scholar
  4. Andrealis, T.G., and M.A. Gere. 1992. Laboratory evaluation of Acanthocyclops vernalis and Diacylops bicuspidatus thomasi (Copepoda: Cyclopoida) as predators of Aedes canadensis and Aedes stimulans (Diptera: Culicidae). Journal of Medical Entomology 29: 974–979.CrossRefGoogle Scholar
  5. Battish, S.K. 1992. Freshwater zooplankton of India, 6, 233. Calcutta: Oxford and IBH Publication. Co. Pvt. Ltd.Google Scholar
  6. Benelli, G., K. Murugan, C. Panneerselvam, P. Madhiyazhagan, B. Conti, and M. Nicoletti. 2015a. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitology Research 114: 391–397.CrossRefGoogle Scholar
  7. Benelli, G., S. Bedini, F. Cosci, C. Toniolo, B. Conti, and M. Nicoletti. 2015b. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): A bioactivity survey across production sites. Parasitology Research 114: 227–236.CrossRefGoogle Scholar
  8. Chansang, U., A. Bhumiratana, and P. Kittayapong. 2004. Combination of Mesocyclops thermocyclopoides and Bacillus thruingiensis var israelensis: A better approach for the control of Aedes aegypti larvae in containers. Journal of Vector Ecology 29: 218–226.Google Scholar
  9. Conti, B., G. Flamini, P.L. Cioni, L. Ceccarini, M. Macchia, and G. Benelli. 2014. Mosquitocidal essential oils: Are they safe against non-target aquatic organisms? Parasitology Research 113: 251–259.CrossRefGoogle Scholar
  10. Dieng, H., C. Mwandawiro, M. Boots, R. Morales, T. Satho, N. Tuno, Y. Tsuda, and M. Takagi. 2002. Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae). Journal of Vector Ecology 27: 31–38.Google Scholar
  11. Dussart, B.H., and D. Defaye. 1995. Copepoda. Introduction to the Copepoda. Guides to the identification of the microinvertebrates of the continental waters of the world. Vol. 7, 1–277. Leiden: Backhuys Publishers.Google Scholar
  12. Edmondson, W.T. 1959. Freshwater biology. 2nd ed, 1248. London/New York: Wiley and Sons Inc./Chapman and Hall Limited.Google Scholar
  13. Finney, D.J. 1971. Probit analysis, 68–78. London: Cambridge University Press.Google Scholar
  14. Focks, D., S. Sackett, D. Bailey, and D. Dame. 1981. Observations on container-breeding mosquitoes in New Orleans, Louisiana, with an estimate of the population density of Aedes aegypti (L.). The American Journal of Tropical Medicine and Hygiene 30: 1329–1335.CrossRefGoogle Scholar
  15. Guzman, M.G., and G. Kouri. 2002. Dengue: An update. The Lancet Infectious Diseases 2: 33–42.CrossRefGoogle Scholar
  16. Jekow, P.S., D. Schaper, P. Günther, W. Tavares, and Hinrichs. 1998. Crystallization and preliminary X-ray crystallographic studies of the 13-fold symmetric portal protein of bacteriophage SPP1. Acta Crystallographica Section D Biological Crystallography 54 (5): 1008–1011.CrossRefGoogle Scholar
  17. Kalimuthu, K., C. Panneerselvam, K. Murugan, and J.S. Hwang. 2013. Green synthesi s of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. Journal of Entomological and Acarological Research 45(2): e11.CrossRefGoogle Scholar
  18. Kalimuthu, K., S.M. Lin, L.C. Tseng, K. Murugan, and J.S. Hwang. 2014. Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741 (1): 113–123.CrossRefGoogle Scholar
  19. Kasturirangan, L.R. 1963. A key for the identification of the more common planktonic copepoda of Indian coastal waters, 87pp. New Delhi: Council of Scientific and Industrial Research (Publ Indian National Committee on Oceanic Research, No. 2).Google Scholar
  20. Kay, B.H., C.P. Cabral, A.C. Sleigh, M.D. Brown, Z.M. Ribeiro, and A.W. Vasconcelos. 1992. Laboratory evaluation of Brazilian Mesocyclops (Copepoda: Cyclopidae) for mosquito control. Journal of Medical Entomology 29: 599–602.CrossRefGoogle Scholar
  21. Kay, B.H., S.A. Lyons, J.S. Holt, M. Holynska, and B.M. Russell. 2002. Point source inoculation of Mesocyclops (Copepoda: Cyclopidae) gives widespread control of Ochlerotatus and Aedes (Diptera: Culicidae) immature in service manholes and pits in North Queensland, Australia. Journal of Medical Entomology 39: 469–474.CrossRefGoogle Scholar
  22. Kosiyachinda, P., A. Bhumiratana, and P. Kittayapong. 2003. Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand. The American Journal of Tropical Medicine and Hygiene 69: 206–212.CrossRefGoogle Scholar
  23. Kumar, Ram, and Jiang-Shiou Hwang. 2006. Larvicidal efficiency of aquatic predators: A perspective for mosquito biocontrol. Zoological Studies 45 (4): 447–466.Google Scholar
  24. Kumar, Ram, and T. Ramakrishna Rao. 2003. Predation on mosquito larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey. International Review of Hydrobiology 88 (6): 570–581.CrossRefGoogle Scholar
  25. Kumar, R., and T.R. Rao. 2003. Predation on mosquito (Anopheles stephensi and Culex quinquefasciatus) larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey. International Review of Hydrobiology 88: 570–581.CrossRefGoogle Scholar
  26. Locantoni, L., F. Guisti, M. Cristofaro, L. Pasqualini, F. Esposito, P. Lupetti, and A. Habluetzel. 2006. Effect of neem extract on blood feeding oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue & Cell 38: 361–371.CrossRefGoogle Scholar
  27. Mahesh Kumar, P., K. Murugan, K. Kovendan, C. Panneerselvam, K. Prasanna Kumar, D. Amerasan, J. Subramaniam, K. Kalimuthu, and T. Nataraj. 2012. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitology Research 111 (2): 609–618.CrossRefGoogle Scholar
  28. Manrique-Saide, P., S. Ibanez-Bernal, H. Delfin-Gonzalez, and V. Parra Tabla. 1998. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres. Medical and Veterinary Entomology 12: 386–390.CrossRefGoogle Scholar
  29. Marten, G.G. 1990. Evaluation of cyclopoid copepods for Aedes albopictus control in tires. Journal of the American Mosquito Control Association 6: 681–688.Google Scholar
  30. Marten, G.G., E.S. Bordes, and M. Nguyen. 1994. Use of cyclopoid copepods for mosquito control. Hydrobiologia 292 (93): 491–496.CrossRefGoogle Scholar
  31. Marten, G.G., M. Nguyen, B.J. Mason, and G. Ngo. 2000. Natural control of Culex quinquefasciatus larvae in residential ditches by the copepod Macrocyclops albidus. Journal of Vector Ecology 25: 7–15.Google Scholar
  32. Micieli, M.V., G. Marti, and J.J. Garcia. 2002. Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container breeding mosquitoes in Argentina. The Memórias do Instituto Oswaldo Cruz 97: 835–838.CrossRefGoogle Scholar
  33. Mittal, P.K., R.C. Dhiman, T. Adak, and V.P. Sharma. 1997. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) against mosquito larvae. Southeast Asian Journal of Tropical Medicine and Public Health 28: 857–861.Google Scholar
  34. Murugan, K., G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicolettic, J.S. Hwang, S. Suresh, and P. Madhiyazhagan. 2015. Cymbopogon citratus synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology 153: 129–138.CrossRefGoogle Scholar
  35. Nam, V.S., N.T. Yen, B.H. Kay, G.G. Marten, and J.W. Reid. 1998. Eradication of Aedes aegypti from a village in Vietnam using copepod and community participation. The American Journal of Tropical Medicine and Hygiene 59: 657–660.CrossRefGoogle Scholar
  36. Nam, V.S., N.T. Yen, T.V. Phong, T.U. Ninh, L.Q. Mai, L.V. Lo, L.T. Nghia, A. Bektas, A. Briscombe, J.G. Aaskov, P.A. Ryan, and B.H. Kay. 2005. Elimination of dengue by community programs using Mesocyclops (copepoda) against Aedes aegypti in central Vietnam. The American Journal of Tropical Medicine and Hygiene 72: 67–73.CrossRefGoogle Scholar
  37. Perumal, P., V. Ashok Prabu, T. Nedumaran, and P. Santhanam. 2000. Studies on behaviour and survival rate of Oithona rigida Giesbrecht (Copepoda: Cyclopoida) fed with Coscinodiscus centralis Ehrenberg and Skeletonema costatum Cleve. Seaweed Research & Utilization 22 (1&2): 135–137.Google Scholar
  38. Rawlins, S.C., R. Martı’nez, S. Wiltshire, D. Clarke, P. Prabhakar, and M. Spinks. 1997. Evaluation of Caribbean strains of Macrocyclops and Mesocyclops (Cyclopoida: Cyclopidae) as biological control tools for the dengue vector Aedes aegypti. Journal of the American Mosquito Control Association 13: 18–23.Google Scholar
  39. Reddy, Y.R. 1994. Guides to the identification of the microinvertebrates of the continental waters of the world, ed. Dumont, H. J. F. Copepoda: Calanoida: Diaptomidae, 221. The Hague: SPB Academic Publications.Google Scholar
  40. Rey, J.R., S. O’Connell, S. Sua’rez, Z. Mene’ndez, L.P. Lounibos, and G. Byer. 2004. Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. Journal of Vector Ecology 29: 124–134.Google Scholar
  41. Rivière, F., B.H. Kay, J.M. Klein, and Y. Séchan. 1987. Mesocyclops aspericornis (Copepoda) and Bacillus thuringiensis var. israelensis for the biological control of Aedes and Culex vectors (Diptera: Culicidae) breeding in crab holes, tree holes, and artificial containers. Journal of Medical Entomology 24: 425–430.CrossRefGoogle Scholar
  42. Santhanam, P., and P. Perumal. 2008. Marine plankton in Indian waters. In Training manual on GIS and marine biodiversity, ed. J. Milton, 1–12. India: Lyola College Pub.Google Scholar
  43. Santos, L.U., and C.F.S. Andrade. 1997. Survey of cyclopids (Crustacea, Copepoda) in Brazil and preliminary screening of their potential as dengue vector predators. Revista de Saúde Pública 31: 221–226.CrossRefGoogle Scholar
  44. Schaper, S. 1999. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides. Journal of the American Mosquito Control Association 15: 510–519.Google Scholar
  45. Schaper, S., and F. Hernández. 1998. La Luchacontrael dengue Mesocyclops thermocyclopoides: un posible control biológicopara larvas de Aedes aegypti. Revista Costarricense de Ciencias Médicas 19: 119–125.Google Scholar
  46. Sewell, R.B.S. 1947. The free swimming planktonic Copepoda. Scient. Rep. John Murray Expe. 1933–34. Zoology and Botany 9: 317–592.Google Scholar
  47. Tran, T.T., A. Olsen, E. Viennet, and A. Sleigh. 2015. Social sustainability of Mesocyclops biological control for dengue in South Vietnam. Acta Tropica 141: 54–59.CrossRefGoogle Scholar
  48. Vasconcelos, W., C. Sleigh, B.H. Kay, C.P. Cabral, D.B. Araujo, Z.M. Ribeiro, P.H. Braga, and J.S. Cavalcante Jr. 1992. Community use of copepods to control Aedes aegypti in Brazil. In Dengue – A worldwide problem, a common strategy, proceedings of the international conference on dengue and Aedes aegypti community-based control, ed. S.B. Halstead and H. Gómez-Dantes, 139–144. Mexico: Mexican Ministry of Health and Rockefeller Foundation.Google Scholar
  49. WHO. 2012. Handbook for integrated vector management. Geneva: World Health Organization.Google Scholar
  50. Williamson, C.E. 1991. Ecology and classification of North American freshwater invertebrates. In eds. J.H. Thorp and A.P. Covich, 787–822. San Diego: Academic.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Balakrishnan
    • 1
    • 2
  • P. Santhanam
    • 1
  • N. Manickam
    • 1
  • M. Srinivasan
    • 3
  1. 1.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Marine Aquarium & Regional CentreZoological Survey of India, Ministry of Environment, Forest & Climate Change, Govt. of IndiaDighaIndia
  3. 3.Centre of Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia

Personalised recommendations