Advertisement

The Impact of Microplastics on Marine Copepods

  • P. Raju
  • S. Gunabal
  • P. Santhanam
Chapter

Abstract

Marine atmospheres are exposed to a widespread of anthropogenic pollutants, including radionuclides, nanoparticles, sewage, endocrine disruptors, hydrophobic contaminants and plastic debris. Plastic debris is a wide range contaminant of both freshwater and marine ecosystems, where it can accumulate over time and pose a risk to the health of aquatic organisms (Barnes et al. 2009; Derraik 2002). In the last 60 years, there has been a rapid growing in plastic manufacture, and in 2012 over 288 million tonnes of plastic was produced globally (Plastics Europe 2013) which demonstrates 2.8% development upon the previous year (Plastics Europe 2013). It is held on that 10% of plastics mass produced are likely to end up in the marine environment (Thompson 2006).

References

  1. Andrady, A. 2003. Plastics and the Environment, ed. A.L. Andrady. New York: Wiley.Google Scholar
  2. Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62 (8): 1596–1605.CrossRefGoogle Scholar
  3. Arthur, C., J. Baker, and H. Bamford. 2009. Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. s.l.: NOAA Technical, Memorandum NOS-OR&R30.Google Scholar
  4. Barnes, D.K.A., F. Galgani, R.C. Thompson, and M. Barlaz. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 1985–1998.CrossRefGoogle Scholar
  5. Bellantoni, D.C., and W.T. Peterson. 1987. Temporal variability in egg production rates of Acartia tonsa Dana in Long Island sound. Journal of Experimental Marine Biology and Ecology 107: 199–208.CrossRefGoogle Scholar
  6. Browne, M.A., T. Galloway, and R. Thompson. 2007. Microplastic – An emerging contaminant of potential concern? Integrated Environmental Assessment and Management 3: 559–561.CrossRefGoogle Scholar
  7. Bucklin, A. 2000. Identification of Balanusamphitrite larvae from field zooplankton using species specific primers. Journal of Marine Biology Association of the United Kingdom 95 (3): 497–502.Google Scholar
  8. Cole, M., P. Lindeque, C. Halsband, and T.S. Galloway. 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62: 2588–2597.CrossRefGoogle Scholar
  9. Cole, M., P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger, and T.S. Galloway. 2013. Microplastic ingestion by zooplankton. Environmental Science & Technology 12: 6646–6655.CrossRefGoogle Scholar
  10. Cole, M., P. Lindeque, E. Fileman, C. Halsband, and T. Galloway. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology 49 (2): 1130–1137.CrossRefGoogle Scholar
  11. Davis, C.C. 1955. The Marine and Freshwater Plankton. Michigan: Michigan State University Press. 562pp.Google Scholar
  12. Derraik, J.G. 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44: 842–852.CrossRefGoogle Scholar
  13. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3): 350–356.CrossRefGoogle Scholar
  14. Fendall, L., and M. Sewell. 2009. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin 58: 1225–1228.CrossRefGoogle Scholar
  15. Folch, J., M. Lees, and G.H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497–509.Google Scholar
  16. Fowler, S.W., and L.F. Small. 1972. Sinking rates of euphausiid fecal pellets. Limnology and Oceanography 17 (2): 293–296.CrossRefGoogle Scholar
  17. Frost, B.W. 1972. Effect of size and concentration of food particles on the feeding behaviour of the marine planktoinic copepod Calanus pacif icus. Limnology and Oceanography 17: 805–815.CrossRefGoogle Scholar
  18. Gregory, M.R. 1996. Plastic ‘scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin 32: 867–871.CrossRefGoogle Scholar
  19. Harris, R., P. Wiebe, J. Lenz, H.-R. Skjoldal, and M. Huntley. 2000. ICES Zooplankton Methodology Manual. London: Academic Press.Google Scholar
  20. Hidalgo-Ruz, V., L. Gutow, R.C. Thompson, and M. Thiel. 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology 46 (6): 3060−3075.CrossRefGoogle Scholar
  21. Jones, R.H., K.J. Flynn, and T.R. Anderson. 2002. Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Marine Ecology Progress Series 235: 147–156.CrossRefGoogle Scholar
  22. Kasturirangan, L.R. 1963. A key for the more common planktonic copepods of the Indian waters. CSIR Publication 2: 87.Google Scholar
  23. Kiørboe, T., and M. Sabatini. 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Marine Ecology Progress Series 120 (1–3): 285–298.CrossRefGoogle Scholar
  24. Komar, P.D., A.P. Morse, L.F. Small, and S.W. Fowler. 1981. An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnology and Oceanography 26 (1): 172–180.CrossRefGoogle Scholar
  25. Lozano, R.L., and J. Mouat. 2009. Marine Litter in the North-East Atlantic Region: Assessment and Priorities for Response. London: KIMO International.Google Scholar
  26. Mauchline, J. 1998. The Biology of Calanoid Copepods. London: Academic Press.Google Scholar
  27. Pan, L.C., and C.C. Chien. 2003. A novel application of thermo-responsive polymer to affinity precipitation of polysaccharide. Journal of Biochemical and Biophysical Methods 55 (1): 87–94.CrossRefGoogle Scholar
  28. Perumal, P., P. Santhanam, and M. Rajkumar. 2008. Population density of two copepods in relation to hydrographic parameters in Parangipettai coastal waters, southeast coast of India. Journal of Marine Biological Association of India 50 (2): 1–5.Google Scholar
  29. Plastics Europe. 2013. Plastics – the facts 2013.Google Scholar
  30. Preuss-Ueberschär, C., and S. Ueberschär. 1988. Light and electron microscopic studies on the dose and time dependency of the hepatotoxicity of benzopyrones. Arzneimittelforschung 38 (9): 1318–1326.Google Scholar
  31. Raymont, J.E.G., J. Austin, and E. Linford. 1964. Biochemical studies on marine zooplankton: I. The biochemical composition of Neomysis integer. Journal du Conseil 28: 354–363.CrossRefGoogle Scholar
  32. Ryan, P.G., C.J. Moore, J.A. van Franeker, and C.L. Moloney. 2009. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 1999–2012.CrossRefGoogle Scholar
  33. Santhanam, P., K. Jothiraj, N. Jeyaraj, S. Jeyanthi, A. Shenbaga Devi, and S. Ananth. 2015. Effect of monoalgal diet on the growth, survival and egg production in Nannocalanus minor (Copepoda: Calanoida). Indian Journal of Geo-Marine Sciences 44 (10): 1579–1584.Google Scholar
  34. Smayda, T.J. 1969. Some measurements of the sinking rate of fecal pellets. Limnology and Oceanography 14: 621–625.CrossRefGoogle Scholar
  35. Tarran, G.A., J.L. Heywood, and M.V. Zubkov. 2006. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep-Sea Research 53 (II): 1516–1529.CrossRefGoogle Scholar
  36. Thompson, R.C. 2006. Plastic debris in the marine environment: Consequences and solutions. Marine Nature Conservation in Europe 193: 107–115.Google Scholar
  37. Thompson, R.C., Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. McGonigle, and A.E. Russell. 2004. Lost at sea: Where is all the plastic? Science 304: 838.CrossRefGoogle Scholar
  38. Thor, P., and I. Wendt. 2010. Functional response of carbon absorption efficiency in the pelagic calanoid copepod Acartia tonsa Dana. Limnology and Oceanography 55 (4): 1779–1789.CrossRefGoogle Scholar
  39. Yamamoto, Y., R. Mizuno, T. Nishimura, Y. Ogawa, H. Yoshikawa, H. Fujimura, E. Adachi, T. Kishimoto, T. Yanagihara, and S. Sakoda. 1994. Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. The Journal of Biological Chemistry 269 (50): 31725–31730.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Raju
    • 1
  • S. Gunabal
    • 1
  • P. Santhanam
    • 1
  1. 1.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations