A Microcosm Study on the Impact of Acidification on Feeding, Survival, Nauplii Production Rate, Post-embryonic Development and Nutritional Composition of Marine Copepod

  • T. Jayalakshmi
  • P. Santhanam


Ocean acidification is the ongoing decrease in the pH of the oceans, caused by their uptake of anthropogenic carbon dioxide from the atmosphere. Increased carbon dioxide (CO2) from the burning of fossil fuels and other human activities continues to affect our atmosphere, resulting in global warming and climate change. Less well known is that this carbon dioxide is altering the chemistry of the surface oceans and causing them to become more acidic. From scientists and marine resource managers to policy- and decision-makers, there is a growing concern that the process called ocean acidification could have significant consequences on marine organisms which may alter species composition, disrupt marine food webs and ecosystems and potentially damage fishing, tourism and other human activities connected to the seas.



Authors thank the Head of the Department of Marine Science and authorities of Bharathidasan University for the facilities provided. Authors also thank the DBT, Govt. of India, for providing financial assistance to establish the copepod culture facility through the extramural project (BT/PR 5856/AAQ/3/598/2012). The first author (TJ) thank the Bharathidasan University, for University Research Fellowship.


  1. Ajiboye, O.O., A.F. Yakubu, T.E. Adams, E.D. Olaji, and N.A. Nwogu. 2011. A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries 21 (2): 225–246.CrossRefGoogle Scholar
  2. Almén, A.K., A. Vehmaa, A. Brutemark, L. Bach, S. Lischka, S. Furuhagen, A. Paul, J.R. Bermúdez, U. Riebesell, J. Engström-Öst, and A. Stuhr. 2016. Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production. Biogeosciences 13: 1037–1048.CrossRefGoogle Scholar
  3. AOAC. 1995. Official Methods of Analysis, 16th ed., 62pp. Washington, DC: Association of Official Analytical Chemists.Google Scholar
  4. Barroso, M.V., B.B. Boos, R. Antoniassi, and L.F.L. Fernandes. 2015. Use of the copepod Oithona hebes as a bioencapsulator of essential fatty acids. Brazilian Journal of Oceanography 63 (3): 331–336.CrossRefGoogle Scholar
  5. Bermúdez, J.R., M. Winder, A. Stuhr, A.K. Almén, J. Engström-Öst, and U. Riebesell. 2016. Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences Discussions 10: 5194.Google Scholar
  6. Bligh, E.G., and W.J. Dyer. 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.CrossRefGoogle Scholar
  7. Bundy, J.G., M.P. Davey, and M.R. Viant. 2009. Environmental metabolomics: A critical review and future perspectives. Metabolomics 5: 3–21.CrossRefGoogle Scholar
  8. Burnell, O., B. Russell, A. Irving, and S. Connell. 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Marine Ecology Progress Series 485: 37–46.CrossRefGoogle Scholar
  9. Buttino, I. 1994. The effect of low concentrations of phenol and ammonia on egg production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi. Marine Biology 119 (4): 629–634.CrossRefGoogle Scholar
  10. Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology Annual Review 49: 1–42.Google Scholar
  11. Byrne, M., M. Ho, P. Selvakumaraswamy, H.D. Nguyen, S.A. Dworjanyn, and A.R. Davis. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society of Victoria 276: 1883–1888.CrossRefGoogle Scholar
  12. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.CrossRefGoogle Scholar
  13. Caldeira, K., and M. Wickett. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research: Oceans 110: 1–12.CrossRefGoogle Scholar
  14. Camus, T., and C. Zeng. 2012. Reproductive performance, survival and development of nauplii and copepodites, sex ratio and adult life expectancy of the harpacticoid copepod, Euterpina acutifrons fed different microalgal diets. Aquaculture Research 43: 1159–1169.CrossRefGoogle Scholar
  15. Carman, K.R., D. Thistle, F.W. Fleeger, and J.P. Barry. 2004. The influence of introduced CO2 on deep sea metazoan meiofauna. Journal of Oceanography 60: 762–772.CrossRefGoogle Scholar
  16. Comeau, S., R. Jeffree, J.L. Teyssié, and J.P. Gattuso. 2010. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One 5 (6): e11362.CrossRefGoogle Scholar
  17. Comeau, S., R. Carpenter, C. Lantz, and P. Edmunds. 2015. Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12: 365–372.CrossRefGoogle Scholar
  18. Conceiçao, L.E.C., M. Yufera, P. Makridis, S. Morais, and M. Dinis. 2010. Live feeds for early stages of fish rearing. Aquaculture Research 41: 613–640.CrossRefGoogle Scholar
  19. Conover, R.J., and E.D.S. Corner. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. Journal of the Marine Biological Association of the United Kingdom 48: 49–75.CrossRefGoogle Scholar
  20. Copeman, L.A., C.C. Parrish, J.A. Brown, and M. Harel. 2002. Effects of docosahexaenoic, eicosapentaenoic and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): A live food enrichment experiment. Aquaculture 210 (1–4): 285–304.CrossRefGoogle Scholar
  21. Coull, B.C., and G.T. Chandler. 1992. Pollution and meiofauna: Field, laboratory and mesocosm studies. Oceanography and Marine Biology – An Annual Review 30: 191–271.Google Scholar
  22. Cripps, G., P. Lindeque, and K. Flynn. 2014. Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biology 20: 3377–3385.CrossRefGoogle Scholar
  23. Cutts, C.J. 2003. Culture of harpacticoid copepods: Potential as live food for rearing marine fish. Advances in Marine Biology 44: 295–316.CrossRefGoogle Scholar
  24. Davis, C.C. 1955. The Marine and Freshwater Plankton, 562. East Lansing: Michigan State University Press.Google Scholar
  25. Drillet, G., M.H. Iversen, T.F. Sørensen, H. Ramløv, T. Lund, and B.W. Hansen. 2006. Effect of cold storage upon eggs of a calanoid copepod Acartia tonsa Dana and their offspring. Aquaculture 254: 714–729.CrossRefGoogle Scholar
  26. Drillet, G., S. Frouël, M.H. Sichlau, P.M. Jepsen, J.K. Højgaard, A.K. Joarder, and B.W. Hansen. 2011. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315 (3–4): 155–166.CrossRefGoogle Scholar
  27. Dubois, M., K.A. Gills, J.K. Hamilton, P.A. Rober, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350.CrossRefGoogle Scholar
  28. Dupont, S., and H.O. Portner. 2013. A snapshot of ocean acidification research. Marine Biology 160: 1765–1771.CrossRefGoogle Scholar
  29. Dupont, S., and M.C. Thorndyke. 2008. Ocean acidification and its impact on the early life-history stages of marine animals. In Impacts of Acidification on Biological, Chemical and Physical Systems in the Mediterranean and Black Seas, CIESM Monographs, Monaco, ed F. Briand, 89–97.Google Scholar
  30. Dupont, S., O. Ortega-Martinez, and M. Thorndyke. 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19: 449–462.CrossRefGoogle Scholar
  31. Evjemo, J.O., K.I. Reitan, and Y. Olsen. 2003. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227: 191–210.CrossRefGoogle Scholar
  32. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.CrossRefGoogle Scholar
  33. FAO. 2012. The state of world fisheries and aquaculture. Rome: FAO. 209pp.Google Scholar
  34. Fitzer, S.C., G.S. Caldwell, A.J. Close, A.S. Clare, R.C. Upstill-Goddard, and M.G. Bentley. 2012. Ocean acidification induces multigenerational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology 418–419: 30–36.CrossRefGoogle Scholar
  35. Folch, J.M., M. Lees, and G.H. Sloane-Stanley. 1956. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497–509.Google Scholar
  36. Gao, K., and Y. Zheng. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16: 2388–2398.CrossRefGoogle Scholar
  37. Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, and M. Kiyohara. 1993. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117: 129–132.CrossRefGoogle Scholar
  38. Gattuso, J.P., and H. Lavigne. 2009. Technical note: Approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6: 2121–2133.CrossRefGoogle Scholar
  39. Gray, J.S. 1985. Nitrogenous excretion by meiofauna from coral reef sediments. Marine Biology 89: 31–35.CrossRefGoogle Scholar
  40. Hanssen, A.E. 2014. Interaction effects of ocean acidification and warming on the fecundity of the marine copepod Calanus finmarchicus. Marine Coastal Development. Norwegian University of Science and Technology, Department of Biology, 63 pp.Google Scholar
  41. Hendriks, I.E., C.M. Duarte, and M.A. Alvarez. 2010. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuarine, Coastal and Shelf Science 86: 157–164.CrossRefGoogle Scholar
  42. Hicks, G.R.F., and B.C. Coull. 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology – Annual Review 21: 67–175.Google Scholar
  43. Hofmann, G.E., and A.E. Todgham. 2010. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.CrossRefGoogle Scholar
  44. Intergovernmental Panel on Climate Change. 2007. Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 104, ed. R.K. Pachauri and A. Reisinger. Geneva: Intergovernmental Panel on Climate Change.Google Scholar
  45. IPCC. 2013. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 3–29. Cambridge/New York: Cambridge University Press.Google Scholar
  46. Jepsen, P.M. et al. 2015. Inorganic nitrogen addition in a semi-intensive turbot larval aquaculture system: Effects on phytoplankton and zooplankton composition. Aquaculture Research. https://doi.rog/10.1111/are.12842.
  47. Jónasdóttir, S., A.W. Visser, and C. Jespersen. 2009. Assessing the role of food quality in the production and hatching of Temora longicornis eggs. Marine Ecology Progress Series 382: 139–150.CrossRefGoogle Scholar
  48. Kaniewska, P., P.R. Campbell, D.I. Kline, M. Rodriguez Lanetty, D.J. Miller, S. Dove, and O. Hoegh-Guldberg. 2012. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7: e34659.CrossRefGoogle Scholar
  49. Kelly, M.W., E. Sanford, and R.K. Grosberg. 2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society of London B 279: 349–356.CrossRefGoogle Scholar
  50. Kletou, D., and J.M. Hall-Spencer. 2012. Threats to ultraoligotrophic marine ecosystems, marine ecosystems. In Marine Ecosystems, ed. A. Cruzado, 34 pp. Rijeka: InTech.Google Scholar
  51. Kroeker, K.J., F. Micheli, and M.C. Gambi. 2013. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3: 156–159.CrossRefGoogle Scholar
  52. Kurihara, H., and A. Ishimatsu. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56: 1086–1090.CrossRefGoogle Scholar
  53. Kurihara, H., S. Shimode, and Y. Shirayama. 2004a. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin 49: 721–727.CrossRefGoogle Scholar
  54. Kurihara, H., S. Shimode, and Y. Shirayama. 2004b. Sub-lethal effects of elevated concentration of CO on planktonic copepods and seaurchins. Journal of Oceanography 60: 743–750.CrossRefGoogle Scholar
  55. Lahnsteiner, F., M. Kletzl, and T. Weismann. 2009. The risk of parasite transfer to juvenile fishes by live copepod food with the example Triaenophorus crassus and Triaenophorus nodulosus. Aquaculture 295: 120–125.CrossRefGoogle Scholar
  56. Lavigne, H., and J.P. Gattuso. 2011. Seacarb: seawater carbonate chemistry with R.R package version 2.4.3.Google Scholar
  57. Leu, E., M. Daase, K.G. Schulz, A. Stuhr, and U. Riebesell. 2013. Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10: 1143–1153.CrossRefGoogle Scholar
  58. Li, W., and K. Gao. 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Marine Pollution Bulletin 64: 699–703.CrossRefGoogle Scholar
  59. Lima, L.C.M., D.M.A.F. Navarro, and L.E. Souzasantos. 2013. Effect of diet on the fatty acid composition of the copepod Tisbe biminiensis. Journal of Crustacean Biology 33 (3): 372–381.CrossRefGoogle Scholar
  60. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265.Google Scholar
  61. Mauchline, J. 1998. The biology of calanoid copepods. Advances in Marine Biology 33 (i-x, 1-7): 10. ill. (Academic Press, London). ISBN 0-12-105545-0(paperback) or ISBN 0-12-026133-2 (hardback).Google Scholar
  62. Mayor, D.J., C. Matthews, K. Cook, A.F. Zuur, and S. Hays. 2007. CO2 induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series 350: 91–97.CrossRefGoogle Scholar
  63. Mayor, D.J., U. Sommer, K.B. Cook, and M.R. Viant. 2015. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Scientific Reports 5: 13690.CrossRefGoogle Scholar
  64. McLachlan, A., and A.C. Brown. 2006. The Ecology of Sandy Shores. 2nd ed, 392. Amsterdam: Elsevier Science.Google Scholar
  65. Meeren, T., R.E. Olsen, K. Hamre, and H.J. Fyhn. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274: 375–397.CrossRefGoogle Scholar
  66. Moriarty, D.J.W., P.C. Pollard, D.M. Alongi, C.R. Wilkinson, and J.S. Gray. 1985. Bacterial productivity and trophic relationships with consumers on coral reefs (Mecor 1). Proceedings of the 5th International Coral Reef Symposium 3: 457–462.Google Scholar
  67. Nageswara Rao, I., and G. Krupanidhi. 2001. Biochemical composition of zooplankton from the Andaman Sea. Journal of Marine Biological Association of India 43: 49–56.Google Scholar
  68. Nanton, D.A., and J.D. Castell. 1998. The effects of dietary fatty acids on the fatty acid composition of harpacticoid copepods, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture 163: 251–261.CrossRefGoogle Scholar
  69. Parrish, C.C., V.M. French, and M.J. Whiticar. 2012. Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combination of autotrophic and heterotrophic protists. Journal of Plankton Research 34 (5): 356–375.CrossRefGoogle Scholar
  70. Pedersen, S.A., B.H. Hansen, D. Altin, and A.J. Olsen. 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2 -acidified seawater: Effects on survival and development. Biogeosciences 10: 7481–7491.CrossRefGoogle Scholar
  71. Pedersen, S.A., V.T. Vage, A.J. Olsen, K.M. Hammer, and D. Altin. 2014. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus gunnerus (Copepoda: Calanoidae). Journal of Toxicology and Environmental Health 77: 535–549.CrossRefGoogle Scholar
  72. Perumal, P., P. Santhanam, and M. Rajkumar. 2008. Population density of two copepods in relation to hydrographic parameters in Parangipettai coastal waters, Southeast coast of India. Journal of Marine Biological Association of India 50: 1–5.Google Scholar
  73. Peterson, C.H., M.C. Kennicutt, R.H. Green, P. Montagna, D.E. Harper, E.N. Powell, and P.F. Roscigno. 1996. Ecological consequences of environmental perturbations associated with offshore hydrocarbon production: A perspective on long-term exposures in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences 53 (11): 2637–2654.CrossRefGoogle Scholar
  74. Pörtner, H.O., S. Dupont, F. Melzner, D. Storch, and M. Thorndyke. 2010. Studies of metabolic rate and other characters across life stages. In Guide to Best Practices Ocean Acidification and Data Reporting, ed. U. Riebesell, V.J. Fabry, L. Hansson, and J.-P. Gattuso, 137–165. Luxembourg: Publications Office of the European Union.Google Scholar
  75. Rajendran, M. 1973. A guide to the study of freshwater calanoids. Journal of Madurai Kamaraj University 1 (Suppl 1): 1–86.Google Scholar
  76. Rajkumar, M., K.P. Kumaraguru Vasagam, and P. Perumal. 2008. Biochemical composition of wild copepods, Acartia erythraea Giesbrecht and Oithona brevicornis Giesbrecht, from Coleroon coastal waters, Southeast coast of India. In Advances in Aquatic Ecology, ed. V.B. Sakhare, vol. 2, 1–20. New Delhi: Daya Publishing House.Google Scholar
  77. Reymond, C.E., A. Lloyd, D.I. Kline, S.G. Dove, and J.M. Pandolfi. 2013. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology 19: 291–302.CrossRefGoogle Scholar
  78. Richardson, A.J. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.CrossRefGoogle Scholar
  79. Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.CrossRefGoogle Scholar
  80. Robin, R.S., K. Vishnu Vardhan, Pradipta R. Muduli, M. Srinivasan, and T. Balasubramanian. 2012. Preponderance of enteric pathogens along the coastal waters of Southern Kerala, Southwest coast of India. Marine Science 2 (1): 6–11.CrossRefGoogle Scholar
  81. Rossoll, D., R. Bermúdez, H. Hauss, K.G. Schultz, U. Riebesell, U. Sommer, and M. Winder. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One 7: e34737.CrossRefGoogle Scholar
  82. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The ocean sink for anthropogenic CO2. Science 305: 367–371.CrossRefGoogle Scholar
  83. Santhanam, P., and P. Perumal. 2012. Feeding, survival, egg production and hatching rate of the marine copepod Oithona rigida Giesbrecht (Copepoda: Cyclopoida) under experimental conditions. Journal of Marine Biological Association of India 54 (1): 38–44.Google Scholar
  84. Santhanam, P., and P. Perumal. 2013. Developmental biology of brackishwater copepod Oithona rigida Giesbrecht: A laboratory investigation. Indian Journal of Geo-Marine Sciences 42 (2): 236–243.Google Scholar
  85. Santhanam, P., S. Ananth, R. Nandakumar, T. Jayalakshmi, M. Kaviyarasan, and P. Perumal. 2015. Intensive indoor and outdoor pilot-scale culture of marine copepods. In Advances in Marine and Brackishwater Aquaculture, 33–42. New Delhi: Springer.Google Scholar
  86. Sato, N., M. Tsuzuki, and A. Kawaguchi. 2003. Glycerolipid synthesis in Chlorella kessleri 11 h II. Effect of the CO2 concentration during growth. Biochimica et Biophysica Acta 1633: 35–42.CrossRefGoogle Scholar
  87. Schulz, K.G., J. Barcelose Ramos, R.E. Zeebe, and U. Riebesell. 2009. CO2 perturbation experiments: Similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences 6: 2145–2153.CrossRefGoogle Scholar
  88. Shiryama, Y., and H. Thorton. 2005. Effect of increased atmospheric CO2 on shallow water marine benthos. Journal of Geophysical Research 110: C09S08.Google Scholar
  89. Støttrup, J.G. 2003. Production and nutritional value of copepods. In Live Feeds in Marine Aquaculture, ed. J.G. Støttrup and L.A. McEvoy. Oxford: Blackwell. 318pp.CrossRefGoogle Scholar
  90. Støttrup, J.G., and N.H. Norsker. 1997. Production and use of copepods in marine fish larviculture. Aquaculture 155: 231–247.CrossRefGoogle Scholar
  91. Strickland, J.D.H., and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, Second edition, bulletin, 167pp. Ottawa: Fisheries Research Board of Canada.Google Scholar
  92. Sun, B., and J.W. Fleeger. 1995. Sustained mass culture of Amphiascoides atopus, a marine harpacticoid copepod in a recirculating system. Aquaculture 136: 313–321.CrossRefGoogle Scholar
  93. Talmage, S.C., and C.J. Gobler. 2012. Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae. Marine Ecology Progress Series 464: 121–147.CrossRefGoogle Scholar
  94. Thistle, D., K.R. Carman, L. Sedlacek, P.G. Brewer, J.W. Fleeger, and J.P. Barry. 2005. Deep-ocean experimental tests of the sensitivity of sediment-dwelling animals to imposed CO2 gradients. Marine Ecology Progress Series 289: 1–4.CrossRefGoogle Scholar
  95. Thomsen, J., and F. Melzner. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667–2676.CrossRefGoogle Scholar
  96. Thor, P., and S. Dupont. 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biology 21: 2261–2271.CrossRefGoogle Scholar
  97. Thor, P., and E.O. Oliva. 2015. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Marine Biology 162: 799–807.CrossRefGoogle Scholar
  98. Tocher, J.A., J.R. Dick, J.E. Bron, A.P. Shinn, and D.R. Tocher. 2010. Lipid and fatty acid composition of parasitic caligid copepods belonging to the genus Lepeophtheirus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 156 (2): 107–114.CrossRefGoogle Scholar
  99. Tomanek, L., M.J. Zuzow, A.V. Ivanina, E. Beniash, and I.M. Sokolova. 2011. Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. The Journal of Experimental Biology 214: 1836–1844.CrossRefGoogle Scholar
  100. Torstensson, A., M. Hedblom, J. Andersson, M.X. Andersson, and A. Wulff. 2013. Synergism between elevated pCO2 and temperature on the Antarctic Sea ice diatom Nitzschia lecointei. Biogeosciences 10 (10): 6391–6401.CrossRefGoogle Scholar
  101. Tunnicliffe, V., K.T.A. Davies, D.A. Butterfield, R.W. Embley, J.M. Rose, and W.W. Chadwick. 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience 2: 344–348.CrossRefGoogle Scholar
  102. Vehmaa, A., A. Brutemark, and J. Engström-Öst. 2012. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7: e48538.CrossRefGoogle Scholar
  103. Vehmaa, A., H. Hogfors, E. Gorokhova, A. Brutemark, T. Holmborn, and J. Engstrom-Ost. 2013. Projected marine climate change: Effects on copepod oxidative status and reproduction. Ecology and Evolution 3 (13): 4548–4557.CrossRefGoogle Scholar
  104. Vizcaíno-Ochoa, V., J.P. Lazo, B. Barón-Sevilla, and M.A. Drawbridge. 2010. The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture 302 (3–4): 228–234.CrossRefGoogle Scholar
  105. Watanabe, Y., A. Yamaguchi, H. Ishida, T. Harimoto, S. Suzuki, Y. Sekido, T. Ikeda, and Y. Shirayama. 2006. Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. Journal of Oceanography 62: 185–196.CrossRefGoogle Scholar
  106. Wetzel, M.A., J.W. Fleeger, and S.P. Powers. 2001. Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf of Mexico, Coastal and Estuarine Studies. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems, ed. R.E. Turner and N.N. Rabalais. Washington, DC: AGU. 165pp.Google Scholar
  107. Whiteley, N.M. 2011. Physiological and ecological responses of crustaceans to ocean acidification. Marine Ecology Progress Series 430: 257–271.CrossRefGoogle Scholar
  108. Zaleha, K., and I. Bursa. 2012. Culture of harpacticoid copepods: understanding the reproduction and effect of environmental factors. Aquaculture, Dr. Zainal Muchlisin (Ed.), ISBN: 978-953-307-974-5, InTech. Available from:
  109. Zaleha, K., and I.J. Farahiyah. 2010. Culture and growth of a marine harpacticoid, Pararobertsonia sp. in different salinity and temperature. Sains Malaysiana 39 (1): 135–140.Google Scholar
  110. Zaleha, K., A. John, H. Asgnari, A. Laama, and M.A.M. Fuad. 2014. Fatty acid profiling of benthic harpacticoid (Pararobertsonia sp.) exposed to environmental stresses. Malaysian Applied Biology Journal 43 (1): 31–39.Google Scholar
  111. Zervoudaki, S., E. Krasakoopoulou, M. Moutsopoulos, S. Protopapa, S. Marro, and F. Gazeau. 2016. Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea. Estuarine, Coastal and Shelf Science 186: 152–162. Scholar
  112. Zhang, D., S. Li, G. Wang, and D. Guo. 2011. Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods. Acta Oceanologica Sinica 30: 86–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • T. Jayalakshmi
    • 1
    • 2
  • P. Santhanam
    • 1
  1. 1.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.National Centre for Sustainable Coastal ManagementMinistry of Environment, Forest and Climate Change (MoEF&CC)ChennaiIndia

Personalised recommendations