Advertisement

Intensive Culture, Biochemical Composition Analysis, and Use of Zooplankton Tisbe sp. (Copepoda: Harpacticoida) as an Alternative Live Feed for Shrimp Larviculture

  • S. Ananth
  • P. Santhanam
Chapter

Abstract

Harpacticoid copepods form a vital link in the aquatic food chain. A harpacticoid life begins as fertilized egg and then hatches as a nauplius (6 stages), copepodite (5 stages), and finally becomes an adult. These developmental stages are mainly governed by the environmental parameters. A complete development may take from a week to several months depending upon the species and environmental parameters. The harpacticoid copepod Tisbe spp. are able to synthesize essential fatty acids (EFA) like EPA and DHA from short-chain fatty acids, even when fed with EFA-deficient microalgae and yeast (Nanton and Castell 1998). Although copepods constitute 80% of zooplankton in the ocean, only 60 copepods are cultured at laboratory level (Drillet 2010). Owing to the growing importance on copepods as live feed for larviculture, it is important to know the basic knowledge on its biology. Stottrup (2000) suggested that “A basic knowledge of physiological processes and population dynamics of a species is a prerequisite for the development of rearing techniques.”

Notes

Acknowledgments

Authors thank the Head of the Department of Marine Science and authorities of Bharathidasan University, Tiruchirappalli-24, for the facilities provided. Authors thank the Department of Biotechnology, Government of India, New Delhi, for marine copepods and microalgae culture facility provided through extramural project (BT/PR 5856/AAQ/3/598/2012). The first author (SA) greatly acknowledges the DBT, Government of India, for providing Senior Research Fellowship.

References

  1. Abolghasem, E.F., S. Majid, A. Naser, O. Hossein, and M.A. Shima. 2011. Laboratory culture of the Caspian Sea calanoid copepod Acartia clausi (Giesbrecht, 1889) at different salinity levels. World Journal of Fish and Marine Sciences 3 (6): 590–599.Google Scholar
  2. Ananth, S., and P. Santhanam. 2011. Laboratory culture and biochemical profile of marine copepod, Macrosetella gracilis (Dana). Aquaculture 12: 49–55.Google Scholar
  3. Ananthi, P., P. Santhanam, R. Nandakumar, S. Ananth, K. Jothiraj, S. Dinesh Kumar, B. Balaji Prasath, and T. Jayalakshmi. 2011. Production and utilization of marine copepods as live feed for larval rearing of shrimp Penaeus monodon with special emphasis an astaxanthin enhancement. Indian Journal of Natural Sciences 11: 494–503.Google Scholar
  4. Anzueto-Sánchez, M.A., B. Barón-Sevilla, B. Cordero-Esquivel, and A. Celaya-Ortega. 2014. Effects of food concentration and temperature on development, growth, reproduction and survival of the copepod Pseudodiaptomus euryhalinus. Aquaculture International 22 (6): 1911–1923.CrossRefGoogle Scholar
  5. Aragao, C., L.E. Conceiçao, M.T. Dinis, and H.J. Fyhn. 2004. Amino acid pools of rotifers and Artemia under different conditions: Nutritional implications for fish larvae. Aquaculture 234 (1): 429–445.CrossRefGoogle Scholar
  6. Araújo-Castro, C.M.V., and L.P. Souza-Santos. 2005. Are the diatoms Navicula sp. and Thalassiosira fluviatilis suitable to be fed to the benthic harpacticoid copepod Tisbe biminiensis? Journal of Experimental Marine Biology and Ecology 327 (1): 58–69.CrossRefGoogle Scholar
  7. Bell, J.G., J. McEvoy, D. Tocher, and J.R. Sargent. 2000. Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. The Journal of Nutrition 130 (7): 1800–1808.CrossRefGoogle Scholar
  8. Cassiano, E.J., C.L. Ohs, C.R. Weirich, N.E. Breen, and A.L. Rhyne. 2011. Evaluation of larval Florida pompano, Trachinotus carolinus, fed nauplii of the calanoid copepod Pseudodiaptomous pelagicus. North American Journal of Aquaculture 73: 114–123.CrossRefGoogle Scholar
  9. Cassiano, E.J., M.L. Wittenrich, G.C. Violetta, and C.A. Watson. 2012. Growth and survival of porkfish (Anisotremus virginicus) larvae: Comparing rotifers and copepod nauplii during first feeding. Animal Biology & Animal Husbandry 4 (2): 72–78.Google Scholar
  10. Chen, Q., J. Sheng, Q. Lin, Y. Gao, and J. Lu. 2006. Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture 258: 575–582.CrossRefGoogle Scholar
  11. Deevy, G.B. 1964. Annual variations in length of copepods in the Sargasso Sea off Bermuda. Journal of the marine Biological Association of the United Kingdom 44: 589–600.CrossRefGoogle Scholar
  12. Devreker, D., S. Souissi, and L. Seuront. 2004. Development and mortality of the first naupliar stages of Eurytemoraaffinis (Copepoda, Calanoida) under different conditions of salinity and temperature. Journal of Experimental Marine Biology and Ecology 303 (1): 31–46.CrossRefGoogle Scholar
  13. Devreker, D. 2009. Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: A laboratory study. Journal of Experimental Marine Biology and Ecology 368: 113–123.CrossRefGoogle Scholar
  14. Dominguez, A., M. Ferreira, P. Coutinho, J. Fábregas, and A. Otero. 2005. Delivery of astaxanthin from Haematococcus pluvialis to the aquaculture food chain. Aquaculture 250 (1): 424–430.CrossRefGoogle Scholar
  15. Drillet, G. 2010. Copepods and their resting eggs, a potential source of nauplii for aquaculture, 170. Ph.D thesis, Roskilde University and Technical University of Denmark, Roskilde and Charlottenlund, Denmark.Google Scholar
  16. Drillet, G., N.O.G. Jorgensen, T.F. Sørensen, H. Ramlov, and B.W. Hansen. 2006. Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research 37: 756–772.CrossRefGoogle Scholar
  17. Drillet, G., L.C. Lindley, A. Michels, J. Wilcox, and N.H. Marcus. 2007. Improving cold storage of subitaneous eggs of the copepod Acartia tonsa Dana from the Gulf of Mexico (Florida-USA). Aquaculture Research 38: 457–466.CrossRefGoogle Scholar
  18. Drillet, G., M. Rais, A. Novac, P.M. Jepsen, M.H. Mahjoub, and B.W. Hansen. 2014. Total egg harvest by the calanoid copepod Acartia tonsa (Dana) in intensive culture effects of high stocking densities on daily egg harvest and egg quality. Aquaculture Research 46 (1–12): 3028–3039.Google Scholar
  19. Evjemo, J.O., K.I. Reitan, and Y. Olsen. 2003. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227: 191–210.CrossRefGoogle Scholar
  20. Finney, C.M. 1979. Salinity stress in harpacticoid copepods. Estuaries 2 (2): 132–135.CrossRefGoogle Scholar
  21. Goswami, S.C., T.S.S. Rao, and S.G.P. Matondkar. 1981. Biochemical composition of zooplankton from the Andaman Sea. Indian Journal of Marine Science 10: 296–300.Google Scholar
  22. Guidi, L.D. 1984. The effect of food composition on ingestion, development, and survival of a harpacticoid copepod, Tisbe cucumariae Humes. Journal of Experimental Marine Biology and Ecology 84 (2): 101–110.CrossRefGoogle Scholar
  23. Jeyaraj, N. 2012. Studies on biodiversity, experimental biology, hatchery production and suitability of marine copepod Paracalanus parvus as live feed for larval rearing of Asian seabass L.calcarifer and tiger shrimp P. monodon, 171. Ph.D., thesis, Bharathidasan University, IndiaGoogle Scholar
  24. Jeyaraj, N., and P. Santhanam. 2011. Comparative growth and survival of wedge-clam, Donax faba Gmelin with special emphasis on marine copepod, Acartia spinicauda and Artemia nauplii. Aquaculture 2: 269–275.Google Scholar
  25. Kahan, D. 1979. Vegetables as food for marine harpacticoid copepods. Aquaculture 16 (4): 345–350.CrossRefGoogle Scholar
  26. Kailasam, M., A.R. Thirunavukkarasu, Abraham Mathew, P. Kishore Chandra, and R. Subburaj. 2002. Influence of size variation and feeding on cannibalism of Asian seabass Lates calcarifer (Bloch) during hatchery rearing phase. Indian Journal of Fisheries 49: 107–113.Google Scholar
  27. Klein Breteler, W.C.M., and S.R. Gonzalez. 1982. Influence of cultivation and food concentration on body length of calanoid copepods. Marine Biology 71: 157–161.CrossRefGoogle Scholar
  28. Knuckey, R.M., G.L. Semmens, R.J. Mayer, and M.A. Rimmer. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture 249 (1): 339–351.CrossRefGoogle Scholar
  29. Kraul, S., K. Brittain, R. Cantress, T. Nagao, H. Ako, A. Ogasawara, and H. Kitagawa. 1993. Nutritional factors affecting stress resistance in the larval mahi mahi Coryphaena hippurus. Journal of the World Aquaculture Society 24: 186–193.CrossRefGoogle Scholar
  30. Krishnakumari, L., and S.C. Goswami. 1993. Biomass and biochemical composition of zooplankton from northwest Bay of Bengal during January 1990. Indian Journal of Marine Science 22: 143–145.Google Scholar
  31. Kurihara, H., and A. Ishimatsu. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56 (6): 1086–1090.CrossRefGoogle Scholar
  32. Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60 (4): 743–750.CrossRefGoogle Scholar
  33. Lee, C.S., and F. Hu. 1981. Salinity tolerance and salinity effects on brood size of Tigriopus japonicus Mori. Aquaculture 22: 377–381.CrossRefGoogle Scholar
  34. Lewis, C.N., K.A. Brown, L.A. Edwards, G. Cooper, and H.S. Findlay. 2013. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences-Biology 110 (51): E4960–E4967.CrossRefGoogle Scholar
  35. Matias-Peralta, H., F.M. Yusoff, M. Shariff, and A. Arshad. 2005. Effects of some environmental parameters on the reproduction and development of a tropical marine harpacticoid copepod Nitocra affinis californica Lang, fed different microalgal diet. Marine Pollution Bulletin 51 (8): 722–728.CrossRefGoogle Scholar
  36. Milione, M., and C. Zeng. 2007. The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture 273 (4): 656–664.CrossRefGoogle Scholar
  37. Milione, N., and C. Zeng. 2008. The effects of temperature and salinity on population growth and egg hatching success of the tropical calanoid copepod Acartia sinjiensis. Aquaculture 275: 116–123.CrossRefGoogle Scholar
  38. Miliou, H., and M. Moraitou-Apostolopoulou. 1991. Effects of seven diets on the population dynamics of laboratory cultured Tisbe holothuriae Humes (Copepoda, Harpacticoida). Helgoländer Meeresuntersuchungen 45 (3): 345–356.CrossRefGoogle Scholar
  39. Mitra, G., P.K. Mukhopadhyay, and S. Ayyappan. 2007. Biochemical composition of zooplankton community grown in freshwater earthen ponds: Nutritional implication in nursery rearing of fish larvae and early juveniles. Aquaculture 272 (1): 346–360.CrossRefGoogle Scholar
  40. Naess, T., and O. Lie. 1998. A sensitive period during first feeding for the determination of pigmentation pattern in Atlantic halibut Hippoglossus hippoglossus L. juveniles: The role of diet. Aquaculture Research 29: 925–934.CrossRefGoogle Scholar
  41. Nageswara Rao, I., and G. Krupanidhi. 2001. Biochemical composition of zooplankton from the Andaman Sea. Journal of the Marine Biological Association of India 43: 49–56.Google Scholar
  42. Nandakumar, R. 2014. Eco-biology, culture and live feed suitability of zooplankton for nursery rearing of ornamental fish Monodactylus argentus with special emphasis on marine copepod Nitocra affinis, 180. Ph.D., thesis, Bharathidasan University, India.Google Scholar
  43. Nandini, S., A.R.N. Ortiz, and S.S.S. Sarma. 2011. Elaphoidella grandidieri (Harpacticoida: Copepoda): Demographic characteristics and possible use as live prey in aquaculture. Journal of Environmental Biology 32: 505–511.Google Scholar
  44. Nanton, D.A., and J.D. Castell. 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture 163: 251–261.CrossRefGoogle Scholar
  45. Ohs, C.L., K.L. Chang, S.W. Grabe, M.A. DiMaggio, and E. Stenn. 2010. Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 307 (3): 225–232.CrossRefGoogle Scholar
  46. Olivotto, I., A. Rollo, R. Sulpizio, M. Avella, L. Tosti, and O. Carnevali. 2006. Breeding and rearing the sunrise dottyback Pseudochromis flavivertex: The importance of live prey enrichment during larval development. Aquaculture 255: 480–487.CrossRefGoogle Scholar
  47. Olivotto, I., I. Buttino, M. Borroni, C.C. Piccinetti, M.G. Malzone, and O. Carnevali. 2008. The use of the Mediterranean calanoid copepod Centropages typicus in Yellowtail clownfish (Amphiprion clarkii) larviculture. Aquaculture 284 (1): 211–216.CrossRefGoogle Scholar
  48. Olivotto, I., M.A. Avella, I. Buttino, A. Cutignano, and O. Carnevali. 2009. Calanoid copepod administration improves yellow tail clown fish (Amphiprion clarkii) larviculture: biochemical and molecular implications. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux) 2 (3): 355–367.Google Scholar
  49. Olivotto, I., N.E. Tokle, V. Nozzi, L. Cossignani, and O. Carnevali. 2010. Preserved copepods as a new technology for the marine ornamental fish aquaculture: A feeding study. Aquaculture 308: 124–131.CrossRefGoogle Scholar
  50. Olivotto, I., G. Gaiot, L. Holste, F. Tulli, G. Cardinaletti, C.C. Piccinetti, G. Gioacchini, and O. Carnevali. 2012. Are Acartia tonsa cold-stored eggs a suitable food source for the marine ornamental species Amphiprion polymnus? A feeding study. Aquaculture Nutrition 18: 685–696.CrossRefGoogle Scholar
  51. Paffenhofer, G.A. 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgolander Wiss.Meeresunters. 20: 346–359.CrossRefGoogle Scholar
  52. Payne, M.F., and R.J. Rippingale. 2000. Rearing West Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture 188 (3): 353–361.CrossRefGoogle Scholar
  53. ———. 2001. Intensive cultivation of the calanoid copepod Gladioferensimparipes. Aquaculture 201 (3): 329–342.CrossRefGoogle Scholar
  54. Payne, M.F., R.J. Rippingale, and J.J. Cleary. 2001. Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture 194: 137–150.CrossRefGoogle Scholar
  55. Pedersen, S.A., B.H. Hansen, D. Altin, and A.J. Olsen. 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater: Effects on survival and development. Biogeosciences 10 (11): 7481–7491.CrossRefGoogle Scholar
  56. Perumal, P., M. Rajkumar, and P. Santhanam. 2009. Biochemical composition of wild copepods, Acartia spinicauda and Oithona similis, from Parangipettai coastal waters in relation to environmental parameters. Journal of Environmental Biology 30 (6): 995–1005.Google Scholar
  57. Pinto, C.S.C., L.P. Souza-Santos, and P.J.P. Santos. 2001. Development and population dynamics of Tisbe biminiensis (Copepoda: Harpacticoida) reared on different diets. Aquaculture 198: 253–267.CrossRefGoogle Scholar
  58. Puello-Cruz, A.C., S. Mezo-Villalobos, B. Gonzalez-Rodriguez, and D. Voltolina. 2009. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture 290 (3): 317–319.CrossRefGoogle Scholar
  59. Rajkumar, M., and K.P.K. Vasagam. 2006. Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture 261: 649–658.CrossRefGoogle Scholar
  60. Raju, P., M. Kathiresan, S. Ananth, R. Nandakumar, T. Jayalakshmi, P. Ananthi, A. Shenbaga Devi, and P. Santhanam. 2012. Laboratory culture of marine cyclopoid copepod Oithona rigida Giesbrecht. Indian Journal of Natural Sciences 3 (14): 1177–1181.Google Scholar
  61. Rhyne, A.L., C.L. Ohs, and E. Stenn. 2009. Effects of temperature on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 292: 53–59.CrossRefGoogle Scholar
  62. Ribeiro, A.C., and L.P. Souza-Santos. 2011. Mass culture and offspring production of marine harpacticoid copepod Tisbe biminiensis. Aquaculture 321 (3-4): 280–288.CrossRefGoogle Scholar
  63. Ronnestad, I., S. Helland, and O. Lie. 1998. Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods. Aquaculture 165 (1): 159–164.CrossRefGoogle Scholar
  64. Rønnestad, I., S.K. Tonheim, H.J. Fyhn, C.R. Rojas-Garcıa, Y. Kamisaka, W. Koven, and L.E.C. Conceição. 2003. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227 (1-4): 147–164.CrossRefGoogle Scholar
  65. Safiullah, A. 2001. Biochemical and nutritional evaluation and culture of freshwater live food organisms for aqua hatcheries. Ph.D. thesis, University of Madras, 103 pp.Google Scholar
  66. Santhanam, P., and P. Perumal. 2001. Note on the amino acid profile of cultured copepod, Oithonarigida Giesbrecht. Ad. Bios. 20: 83–88.Google Scholar
  67. Santhanam, P., and P. Perumal. 2012. Effect of temperature, salinity and algal food concentration on population density, growth and survival of marine copepod Oithona rigida Giesbrecht. Indian Journal of Marine Science 41 (4): 369.Google Scholar
  68. Santhanam, P., P. Perumal, and M. Rajkumar. 2004. Effect of feeding Artemia on growth and survival of P.monodon larvae. Journal of Applied Fisheries & Aquaculture IV (2): 42–46.Google Scholar
  69. Schipp, G. 2006. The use of calanoid copepods in semi-intensive tropical marine fish larviculture. In Avances en Nutrición Acuícola VIII. 8th international symposium on aquatic nutrition, ed. L.E. Cruz-Suárez, D. Rique-Marie, M. Tapia-Salazar, M.G. Nieto-López, D.A. Villareal-Cavazos, A.C. Puello-Cruz, and A. García-Ortega, 84–94. Monterrey: Univ. Autón. Nuevo León.Google Scholar
  70. Schipp, G.P., J.M.P. Bosmans, and A.J. Marshall. 1999. A method for hatchery culture of tropical calanoid copepoda, Acartia spp. Aquaculture 174: 81–88.CrossRefGoogle Scholar
  71. Shields, R.J., J.G. Bell, F.S. Luizi, B. Gara, N.R. Bromage, and J.R. Sargent. 1999. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: Relation to dietary essential fatty acids. The Journal of Nutrition 129 (6): 1186–1194.CrossRefGoogle Scholar
  72. Sorensen, T., F.G. Drillet, and K. Engell-Sorensen. 2007. Production and biochemical composition of eggs from neritic calanoid copepods reared in large outdoor tanks (Limfjord, Denmark). Aquaculture 263: 84–96.CrossRefGoogle Scholar
  73. Sreepada, R.A., C.U. Rivonker, and A.H. Parulekar. 1992. Biochemical composition and calorific potential of zooplankton from Bay of Bengal. Indian Journal of Marine Science 21: 70–73.Google Scholar
  74. Stottrup, J.G. 2000. The elusive copepods. Their production and suitability in marine aquaculture. Aquaculture Research 31: 703–711.CrossRefGoogle Scholar
  75. Stottrup, J.G., J.G. Bell, and J.R. Sargent. 1999. The fate of lipids during development and cold storage of eggs in the laboratory reared calanoid copepod Acartia tonsa Dana and in response to different algal diets. Aquaculture 176: 257–269.CrossRefGoogle Scholar
  76. Sumitra Vijayaragavan, R.A. Selvakumar, and T.S.S. Rao. 1982. Studies on zooplankton from the Arabian Sea off the South-Central west coast of India. Indian Journal of Marine Sciences 11: 70–74.Google Scholar
  77. Teixeira, P.F., S.M. Kaminski, T.R. Avila, A.P. Cardozo, J.G. Bersano, and A. Bianchini. 2010. Diet influence on egg production of the copepod Acartia tonsa (Dana, 1896). Anais da Academia Brasileira de Ciências 82 (2): 333–339.CrossRefGoogle Scholar
  78. Torrissen, O.J., and G. Naevdal. 1988. Pigmentation of salmonids variation in flesh carotenoids of Atlantic salmon. Aquaculture 68 (4): 305–310.CrossRefGoogle Scholar
  79. Van der Meeren, T., R.E. Olsen, K. Hamre, and H.J. Fyhn. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274: 375–397.CrossRefGoogle Scholar
  80. Van Nieuwerburgh, L., I. Wänstrand, J. Liu, and P. Snoeijs. 2005. Astaxanthin production in marine pelagic copepods grazing on two different phytoplankton diets. Journal of Sea Research 53 (3): 147–160.CrossRefGoogle Scholar
  81. Vance, E., and J.E. Vance. 1985. Biochemistry of lipids and membranes. Menlo Park: Cummings Publishing Company, Inc.Google Scholar
  82. Venkatesan, G. 2014. Effect of pH on feeding, survival and fecundity of marine cyclopoid copepod Oithona rigida Giesbrecht, 40. M.Sc thesis, Bharathidasan University.Google Scholar
  83. Wainman, B., and R.E.H. Smith. 1997. Can physicochemical factors predict lipid content in phytoplankton. Freshwater Biology 38 (3): 571–579.CrossRefGoogle Scholar
  84. Watanabe, T., C. Kitajima and S. Fujita. 1983. Nutritional value of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34:115-143.CrossRefGoogle Scholar
  85. Watanabe, T., and V. Kiron. 1996. Prospects in fish dietetics. Aquaculture 124: 223–251.CrossRefGoogle Scholar
  86. Weydmann, A., J.E. Soreide, S. Kwasniewski, and S. Widdicombe. 2012. Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. Journal of Experimental Marine Biology and Ecology 428: 39–42.CrossRefGoogle Scholar
  87. Williams, T.D., and M.B. Jones. 1999. Effects of temperature and food quantity on the reproduction of Tisbe battagliai (Copepoda: Harpacticoida). Journal of Experimental Marine Biology and Ecology 236 (2): 273–290.CrossRefGoogle Scholar
  88. Yamada, Y., and T. Ikeda. 1999. Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biology and Ecology 46 (1): 62–67.Google Scholar
  89. Zervoudaki, S., C. Frangoulis, L. Giannoudi, and E. Krasakopoulou. 2014. Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions. Mediterranean Marine Science 15 (1): 74–83.CrossRefGoogle Scholar
  90. Zhang, D., S. Li, G. Wang, D. Guo, K. Xing, and S. Zhang. 2011. Biochemical responses of the copepod Centropages tenuiremis to CO2-driven acidified seawater. Water Science and Technology 65 (1): 30–37.CrossRefGoogle Scholar
  91. Zhang, Dajuan, Shaojing Li, Guizhong Wang, and Donghui Guo. 2011. Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods. Acta Oceanologica Sinica 30 (6): 86–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Ananth
    • 1
    • 2
  • P. Santhanam
    • 3
  1. 1.Marine Planktonology & Aquaculture Lab., Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Animal Husbandry, Dairying and FisheriesMinistry of Agriculture and Farmers Welfare, Krishi BhavanNew DelhiIndia
  3. 3.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations