Advertisement

Study on Molecular Taxonomy and Phylogenetic Analysis of Phytoplankton

  • S. Jeyapandi
  • C. Rajthilak
  • P. Santhanam
  • A. Begum
  • S. Ravikumar
  • P. Pachiappan
  • S. U. Ahmed
Chapter

Abstract

Microalgae, also known as phytoplankton, are abundant microorganisms, which originate in freshwater and marine atmospheres. Phytoplankton play a key role in bio-geochemistry, subsequently they yield the bulk of oxygen on earth through photosynthesis. Microalgae can produce high-value chemical products like carotenoids, antioxidants, fatty acids, and sterols. Microalgae can also be considered as an attractive raw material for biofuel production and CO2 sequestration. However, unfortunately the expertise and techniques available for taxonomic identification of microalgae using morphological characteristics are very scarce. This chapter dealt the latest research and newest approaches to study the taxonomy of these important organisms, as well as covering the modern method such as molecular taxonomy and phylogenetic analysis of phytoplankton. The chapter first deals with practical information on methods of isolation of genomic DNA and evolutionary analysis of phytoplankton, for different algal species. This could be an indispensable tool for anyone working in this field to learn more about these microorganisms.

Keywords

Microalgae Photosynthesis Biofuel Gene expression 

References

  1. Adl, S.M., A.G. Simpson, M.A. Farmer, R.A. Andersen, O.R. Anderson, J.R. Barta, S.S. Bowser, G. Brugerolle, R.A. Fensome, S. Fredericq, T.Y. James, S. Karpov, P. Kugrens, J. Krug, C.E. Lane, L.A. Lewis, J. Lodge, D.H. Lynn, D.G. Mann, R.M. McCourt, L. Mendoza, O. Moestrup, S.E. Mozley-Standridge, T.A. Nerad, C.A. Shearer, A.V. Smirnov, F.W. Spiegel, and M.F. Taylor. 2005. The new higher-level classification of eukaryotes with emphasis on the taxonomy of protists. The Journal of Eukaryotic Microbiology 52: 399–451.CrossRefGoogle Scholar
  2. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2014. Chapter 4: DNA, chromosomes and genomes. In Molecular Biology of the Cell, 6th ed. New York: Garland Science. ISBN 9780815344322.Google Scholar
  3. Ausubel, F.M., et al. 1991. Current Protocols in Molecular Biology. New York: Wiley.Google Scholar
  4. Banerjee, C., R. Bandopadhyay, and P. Shukla. 2012. A simple novel agar diffusion method for isolation of indigenous microalgae Chlamydomonas sp. CRP7 and Chlorella sp. CB4 from operational swampy top soil. Indian Journal of Microbiology 52: 710–712.CrossRefGoogle Scholar
  5. Bustin, S.A. 2004. A to Z of Quantitative PCR. LaJolla: International University Line.Google Scholar
  6. Cavalier-Smith, T. 1981. Eukaryote kingdoms: Seven or nine? Bio Systems 14: 461–481.CrossRefGoogle Scholar
  7. Chakraborty, R.D., K. Chakraborty, and E.V. Radhakrishnan. 2007. Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. Journal of Agricultural and Food Chemistry 55: 4043–4051.CrossRefGoogle Scholar
  8. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25: 294–306.CrossRefGoogle Scholar
  9. Darienko, T., L. Gustavs, A. Eggert, W. Wolf, and T. Pröschold. 2015. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA bar-coding with further implications for the species identification in environmental samples. PLoS One 10: e0127838.CrossRefGoogle Scholar
  10. Douzery, E.J.P., E.A. Snell, E. Bapteste, F. Delsuc, and H. Philippe. 2004. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils. Proceedings of the National Academy of Sciences of the United States of America 101: 15386–15391.CrossRefGoogle Scholar
  11. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  12. Ferreira, M., A. Maseda, J. Fábregas, and A. Otero. 2008. Enriching rotifers with “premium” microalgae Isochrysis galbana clone T-ISO. Aquaculture 279: 126–130.CrossRefGoogle Scholar
  13. Friedl, T. 1997. The evolution of the green algae. Plant Systematics and Evolution 11: 87–101.CrossRefGoogle Scholar
  14. Harris, E. 1998. A Low-Cost Approach to PCR. Oxford: Oxford University Press.Google Scholar
  15. Helling, R.B., H.M. Goodman, and H.W. Boyer. 1974. Analysis of endonuclease R•EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. Journal of Virology 14: 1235–1244.Google Scholar
  16. Innis, M.A., D.H. Gelfand, J.J. Sninsky, and T.J. White, eds. 1990. PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press.Google Scholar
  17. Irobalieva, R.N., J.M. Fogg, D.J. Catanese, D.J. Catanese, T. Sutthibutpong, M. Chen, A.K. Barker, S.J. Ludtke, S.A. Harris, M.F. Schmid, W. Chiu, and L. Zechiedrich. 2015. Structural diversity of supercoiled DNA. Nature Communications 6: 8440.CrossRefGoogle Scholar
  18. Kirkpatrick, F.H. 1991. Overview of agarose gel properties. In Electrophoresis of Large DNA Molecules: Theory and Applications, 9–22. Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
  19. Koetschan, C., T. Hackl, T. Müller, M. Wolf, F. Förster, and J. Schultz. 2012. ITS2 database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Molecular Phylogenetics and Evolution 63: 585–588.CrossRefGoogle Scholar
  20. Leliaert, F., D.R. Smith, H. Moreau, M.D. Herron, H. Verbruggen, C.F. Delwiche, and O. De Clerck. 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences 31: 1–46.CrossRefGoogle Scholar
  21. Li, Y., Y.F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology 102: 5138–5144.CrossRefGoogle Scholar
  22. Lis, T., and R. Schleif. 1975. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Research 2: 383.CrossRefGoogle Scholar
  23. Maniatis, Tom. 1982. In Molecular cloning: A laboratory manual, ed. T. Maniatis, E.F. Fritsch, and J. Sambrook, 507–520. Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
  24. Mata, T.M., A.A. Martins, and N.S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14: 217–232.CrossRefGoogle Scholar
  25. McPherson, M.J., S.G. Moller, R. Beynon, and C. Howe. 2000. PCR: Basics from Background to Bench. Heidelberg: Springer-Verlag.Google Scholar
  26. Melkonian, M., and B. Sure. 1995. Phylogeny of the Chlorophyta-congruence between ultrastructural and molecular evidence. Bulletin de la Societe Zoologique de France 120: 191–208.Google Scholar
  27. Mutanda, T., D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux. 2010. Bioprospecting for hyper-lipid producing microalgae strains for sustainable biofuel production. Bioresource Technology 102: 57–70.CrossRefGoogle Scholar
  28. Nadeau, T.L., E.C. Milbrandt, and R.W. Castenholz. 2001. Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). Journal of Phycology 37: 650–654.CrossRefGoogle Scholar
  29. Pawlowski, J., P. Esling, F. Lejzerowicz, T. Cedhagen, and T.A. Wilding. 2014. Environmental monitoring through protist next-generation sequencing metabarcoding: Assessing the impact of fish farming on benthic foraminifera communities. Molecular Ecology Resources 14: 1129–1140.CrossRefGoogle Scholar
  30. Pi~nol, J., V. San Andres, E.L. Clare, G. Mir, and W.O.C. Symondson. 2014. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Molecular Ecology Resources 14: 18–26.CrossRefGoogle Scholar
  31. Primrose, S., et al. 2001. Principles of Gene Manipulation. Oxford: Blackwell Science.Google Scholar
  32. Reyes-Prieto, A., A.P. Weber, and D. Bhattacharya. 2007. The origin and establishment of the plastid in algae and plants. Annual Review of Genetics 41: 147–168.CrossRefGoogle Scholar
  33. Sambrook, J., and D.W. Russell. 2001. Principles of Gene Manipulation. Oxford: Blackwell Science. Molecular Cloning, 3rd ed.Google Scholar
  34. Sherwood, A.R., and G.G. Presting. 2007. Universal primers amplify a 23S rRNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology 43: 605–608.CrossRefGoogle Scholar
  35. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.CrossRefGoogle Scholar
  36. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.CrossRefGoogle Scholar
  37. Van de Peer, Y., and R. De Wachter. 1994. TREECON for windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10: 569–570.Google Scholar
  38. Volkmann, J.K., S.W. Jeffrey, P.D. Nichols, G.I. Rogers, and C.D. Garland. 1989. Fatty acid and lipid composition of 10 species of microalgae used in agriculture. Journal of Experimental Marine Biology and Ecology 128: 219–240.CrossRefGoogle Scholar
  39. Yang, Z., and B. Rannala. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107 (20): 9264–9269.CrossRefGoogle Scholar
  40. Yoon, H.S., J.D. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21: 809–818.CrossRefGoogle Scholar
  41. Yu, Y., B. Chen, and W. You. 2007. Identification of the alga known as Nannochloropsis Z-1 isolated from a prawn farm in Hainan, China as Chlorella. World Journal of Microbiology and Biotechnology 23: 207–210.CrossRefGoogle Scholar
  42. Zhang, J., P. Kapli, P. Pavlidis, and A. Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Jeyapandi
    • 1
  • C. Rajthilak
    • 2
  • P. Santhanam
    • 1
  • A. Begum
    • 3
  • S. Ravikumar
    • 2
  • P. Pachiappan
    • 4
  • S. U. Ahmed
    • 5
  1. 1.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Oceanography and Coastal Area Studies, School of Marine SciencesAlagappa UniversityThondiIndia
  3. 3.Department of BotanyTihu CollegeNalbariIndia
  4. 4.Department of Biotechnology, School of BiosciencesPeriyar UniversitySalemIndia
  5. 5.Department of Biotechnology, Ministry of Science and TechnologyGovernment of IndiaNew DelhiIndia

Personalised recommendations