An Introduction to Plankton

  • P. Pachiappan
  • P. Santhanam
  • A. Begum
  • B. Balaji Prasath


The word “plankton” is derived from the Greek word for drifting. Plankton are frequently described as organisms that drift on or near the surface of the water and are unable to swim sufficiently strongly to move toward tides, winds, or currents. This description is not strictly true, in that many planktonic organisms, even very small individuals, can propel themselves for very long distances in water columns in very short periods of time. Many planktonic organisms are single-celled plants, called phytoplankton, while others are single-celled animals, known as zooplankton. However, a few organisms referred to as plankton are the embryonic or juvenile forms of larger organisms, including fish and invertebrates. Planktonic organisms are inhabited in nearly all aquatic ecosystems and play a crucial role in aquatic food webs.


  1. Abida, H., S. Ruchaud, L. Rios, A. Humeau, I. Probert, C. De Vargas, S. Bach, and C. Bowler. 2013. Bioprospecting marine plankton. Marine Drugs 11: 4594–4611. Scholar
  2. Acién Fernández, F.G., David O. Hall, E. Cañizares Guerrero, K. Krishna Rao, and E. Molina Grima. 2003. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. Journal of Biotechnology 103 (2): 137–152.CrossRefGoogle Scholar
  3. Asmat, A. and G. Usup, eds. 2002. The occurrence of aerolysin-positive Aeromonas hydrophila strains in seawater and associated with marine copepods. In Proceedings of the Regional Symposium on Environment and Natural Resources, 495–502Google Scholar
  4. Azaza, M.S., F. Mensi, J. Ksouri, M.N. Dhraief, B. Brini, A. Abdelmouleh, and M.M. Kraıem. 2008. Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. Journal of Applied Ichthyology 24: 202–207.CrossRefGoogle Scholar
  5. Bandarra, N.M., P.A. Pereira, I. Batista, and M.H. Vilela. 2003. Fatty acids, sterols and tocopherol in Isochrysis galbana. Journal of Food Lipids 18: 25–34.CrossRefGoogle Scholar
  6. Beaugrand, G., K. Brander, J. Lindley, S. Souissi, and P. Reid. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426: 661–664.CrossRefGoogle Scholar
  7. Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture, ed. A. Richmond, 312–351. Oxford: Blackwell.Google Scholar
  8. Belay, A., T. Kato, and Y. Ota. 1996. Spirulina (Arthrospira): Potential application as an animal feed supplement. Journal of Applied Phycology 8: 303–311.CrossRefGoogle Scholar
  9. Blanco, A.M., J. Moreno, J.A. Del Campo, J. Rivas, and J.L.G. Guerrero. 2007. Outdoor cultivation of lutein-rich cells of Muriellopsis sp in open ponds. Applied Microbiology and Biotechnology 73: 1259–1266.CrossRefGoogle Scholar
  10. Borovsky, D. 2003. Trypsin-modulating oostatic factor: A potential new larvicide for mosquito control. Journal of Experimental Biology 206: 3869–3875.CrossRefGoogle Scholar
  11. Borowitzka, M.A. 1988. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Physiology 7: 3–15.Google Scholar
  12. ———. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 3–15.CrossRefGoogle Scholar
  13. ———. 1996. Closed algal photobioreactors: Design considerations for large-scale systems. Journal of Marine Biotechnology 4: 185–191.Google Scholar
  14. ———. 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology 70: 313–321.CrossRefGoogle Scholar
  15. Borowitzka, M.A., and L.J. Borowitzka. 1988. Micro-algal biotechnology. Cambridge: Cambridge University Press 477 pp.Google Scholar
  16. Boussiba, S., L. Fan, and A. Vonshak. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. In Methods in enzymology, Carotenoids Part A 213, ed. L. Packer, 371–386. London: Academic Press ISBN 0-12-182114-5.Google Scholar
  17. Brown, M.R., G.A. Dunstan, S.J. Norwood, and K.A. Miller. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of Phycology 32: 64–73.CrossRefGoogle Scholar
  18. Buskey, E.J., J.O. Peterson, and J.W. Ambler. 1996. The swarming behavior of the copepod Dioithona oculata: In situ and laboratory studies. Limnology and Oceanography 41: 513–521.CrossRefGoogle Scholar
  19. Chini Zittelli, G., F. Lavista, A. Bastianini, L. Rodolfi, M. Vincenzini, and M.R. Tredici. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. Journal of Biotechnology 70: 299–312.CrossRefGoogle Scholar
  20. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25: 294–306.CrossRefGoogle Scholar
  21. Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 25: 126–131.CrossRefGoogle Scholar
  22. Costa, J.A.V., L.M. Colla, and P. Duarte. 2003. Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeitschrift fur Naturforschung C-A Journal of Biosciences 58 (76): 80.Google Scholar
  23. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O’Neill, J. Paruelo, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  24. Del Campo, J.A., M. Garcia-Gonzales, and M.G. Guerrero. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology 74: 1163–1174.CrossRefGoogle Scholar
  25. Dhargalkar, V.K., and X.N. Verlecar. 2009. Southern Ocean seaweeds: A resource for exploration in food and drugs. Aquaculture 287: 229–242.CrossRefGoogle Scholar
  26. Dinesh Kumar, S., P. Santhanam, P. Prabhavathi, B. Kanimozhi, M. Abirami, Min S. Park, and Mi-Kyung Kim. 2017. Optimal conditions for the treatment of shrimp culture effluent using immobilized marine microalga Picochlorum maculatum (PSDK01). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.
  27. Dixon, J.E., D.A. Clague, P. Wallace, and R. Poreda. 1997. Volatiles in alkalic basalts from the North Arch Volcanic Field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. Journal of Petrology 38: 911–939.CrossRefGoogle Scholar
  28. Donato, M., M.H. Vilela, and N.M. Bandarra. 2003. Fatty acids, sterols, α-tocopherol and total carotenoids composition of Diacronema vlkianum. Journal of Food Lipids 10: 267–276.CrossRefGoogle Scholar
  29. Miller, E.T. 1996. SalonOvations’ Day Spa Techniques. Cengage Learning, 137.Google Scholar
  30. Molina Grimaa, E., E.-H. Belarbia, F.G. Acién Fern ándeza, A. Robles Medinaa, and Yusuf Chistib. 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances 20: 491–515.CrossRefGoogle Scholar
  31. Frangoulis, C., E. Christou, and J. Hecq. 2005. Comparison of marine copepod outfluxes: Nature, rate, fate and role in the carbon and nitrogen cycles. Advances in Marine Biology 47: 253–309.CrossRefGoogle Scholar
  32. Fuentes, M.M.R., J.L.G. Sanchez, J.M.F. Sevilla, F.G.A. Fernandez, J.A.S. Perez, and E.M. Grima. 1999. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: Quantitative analysis of the daily cyclic variation of culture parameters. Journal of Biotechnology 70: 271–288.CrossRefGoogle Scholar
  33. Geng, D., Y. Wang, P. Wang, W. Li, and Y. Sun. 2003. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). Journal of Applied Phycology 15: 451–456.CrossRefGoogle Scholar
  34. Hanagata, N., T. Takeuchi, Y. Fukuju, D.J. Barnes, and I. Karube. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31 (10): 3345–3348.CrossRefGoogle Scholar
  35. Heidelberg, J., K. Heidelberg, and R. Colwell. 2002. Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied and Environmental Microbiology 68: 5498–5507.CrossRefGoogle Scholar
  36. Hirata, T., M. Tanaka, M. Ooike, T. Tsunomura, and M. Sakaguchi. 2000. Antioxidant activities of phycocyanobilin prepared from S. platensis. Journal of Applied Phycology 12: 435–439.CrossRefGoogle Scholar
  37. Hu, Q., C.W. Zhang, and M. Sommerfeld. 2006. Biodiesel from algae: Lessons learned over the past 60 years and future perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, July 7–12, pp. 40–41 (Abstract).Google Scholar
  38. Humes, A. 1994: How many copepods? In Ecology and Morphology of Copepods: Proceedings of the Fifth International Conference on Copepoda, vol. 292/293. ed. Ferrari, F.D., and B.P. Bradley, 1–7. London: Springer, Developments in Hydrobiology.Google Scholar
  39. Humphrey, A.M. 2004. Chlorophyll as a colour and functional ingredient. Journal of Food Science 69: 422–425.CrossRefGoogle Scholar
  40. Iwasaki, I., Q. Hu, N. Kurano, and S. Miyachi. 1998. Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a “high-CO2” tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. Journal of Photochemistry and Photobiology B 44: 184–190.CrossRefGoogle Scholar
  41. Jin, E.S., and A. Melis. 2003. Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnology and Bioprocess Engineering 8: 331–337.CrossRefGoogle Scholar
  42. Johnson, E., and W. Schroeder. 1995. Microbial carotenoids. Advances in Biochemical Engineering Biotechnology 53: 119–178.Google Scholar
  43. Johnson S, Treasurer J, S B, Nagasawa K, Kabata Z 2004 A review of the impact of parasitic copepods on marine aquaculture. Zoological Studies 43:229–243.Google Scholar
  44. Kodama, M., H. Ikemoto, and S. Miyachi. 1993. A new species of highly CO2-tolreant fast-growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology 1: 21–25.Google Scholar
  45. Kumar, M., M.K. Sharma, and A. Kumar. 2005. Spirulina fusiformis: A food supplement against mercury induced hepatic toxicity. Journal of Health Science 51: 424–430.CrossRefGoogle Scholar
  46. Laws, E.A., and J.L. Berning. 1991. A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases. Biotechnology and Bioengineering 37: 936–947.CrossRefGoogle Scholar
  47. Lee, Y.K. 2001. Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology 13: 307–315.CrossRefGoogle Scholar
  48. Lee, J.S., and J.P. Lee. 2003. Review of advances in biological CO2 mitigation technology. Biotechnology and Bioprocess Engineering 8: 354–359.CrossRefGoogle Scholar
  49. Luckas, B. 1995. Selective detection of algal toxins from shellfishes. Chemie in unserer Zeit 29: 68–75.CrossRefGoogle Scholar
  50. Masuda, H., Y. Takenaka, A. Yamaguchi, S. Nishikawa, and H. Mizuno. 2006. A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. Gene 372: 18–25.CrossRefGoogle Scholar
  51. Matsumoto, H., N. Shioji, A. Hamasaki, Y. Ikuta, Y. Fukuda, M. Sato, N. Endo, and T. Tsukamoto. 1995. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemictory and Biotechnology 51/52: 681–692.CrossRefGoogle Scholar
  52. Matsumoto, H., N. Shioji, A. Hamasaki, and Y. Ikuta. 1996. Basic study on optimization of raceway-type algal cultivator. Journal of Chemical Engineering of Japan 29 (3): 541–543.CrossRefGoogle Scholar
  53. Matz, M.V. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species (vol 17, pg 969, 1999). Nature Biotechnology 17: 1227–1227.CrossRefGoogle Scholar
  54. Metting, F.B. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17: 477–489.CrossRefGoogle Scholar
  55. Metzger, P., and C. Largeau. 2005. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66: 486–496.CrossRefGoogle Scholar
  56. Miao, X., Q. Wu, and C. Yang. 2004. Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis 71: 855–863.CrossRefGoogle Scholar
  57. Miura, Y., W. Yamada, K. Hirata, K. Miyamoto, and M. Kiyohara. 1993. Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology 39/40: 753–761.CrossRefGoogle Scholar
  58. Molina Grima, E.M., J.A.S. Perez, F.G. Camacho, J.M.F. Sevilla, and F.G.A. Fernandez. 1994. Effect of growth-rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis-Galbana in chemostat culture. Applied Microbiology and Biotechnology 41: 23–27.CrossRefGoogle Scholar
  59. Muller-Feuga, A. 2000. The role of microalgae in aquaculture: Situation and trends. Journal of Applied Phycology 12: 527–534.CrossRefGoogle Scholar
  60. Muller-Feuga, A., J. Pruvost, R. Le Guedes, L. Le Dean, P. Legentilhomme, and J. Legrand. 2003. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnology and Bioengineering 84: 544–551.CrossRefGoogle Scholar
  61. Muñoz, R., and B. Guieysse. 2006. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research 40: 2799–2815. Scholar
  62. Nagase, H., K. Eguchi, K. Yoshihara, K. Hirata, and K. Miyamoto. 1998. Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering 86 (4): 421–423.CrossRefGoogle Scholar
  63. Nakano, Y., K. Miyatake, H. Okuno, K. Hamazaki, S. Takenaka, N. Honami, M. Kiyota, I. Aiga, and J. Kondo. 1996. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta horticulturae 440 (9): 49–54.CrossRefGoogle Scholar
  64. Ogbonna, J.C., H. Yoshizawa, and H. Tanaka. 2000. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. Journal of Applied Phycology 12: 277–284.CrossRefGoogle Scholar
  65. Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 liter outdoor photobioreactors. Journal of Applied Phycology 2: 499–506.CrossRefGoogle Scholar
  66. ———. 2003. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering 20: 459–466.CrossRefGoogle Scholar
  67. Olguin, E.J. 2003. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances 22: 81–91.CrossRefGoogle Scholar
  68. Omori, M., and T. Ikeda. 1984. Methods in marine zooplankton ecology. Vol. xiii, 332. New York: Wiley.Google Scholar
  69. Ono, E., and J.L. Cuello. 2007. Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems Engineering 96 (1): 129–134.CrossRefGoogle Scholar
  70. Ördög, V., J. Szigeti, and O. Pulz. 1996. Proceedings of the Conference on Progress in Plant Sciences from Plant Breeding to Growth Regulation. Mosonmagyarovar: Pannon University.Google Scholar
  71. Oswald, W.J., F. Bailey Green, and T.J. Lundquist. 1994. Performance of methane fermentation pits in advanced integrated wastewater pond systems. Water Science and Technology 30: 287–295.CrossRefGoogle Scholar
  72. Pesheva, I., M. Kodama, M.L. Dionisio-Sese, and S. Miyachi. 1994. Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant and Cell Physiology 35 (3): 379–387.Google Scholar
  73. Prasher, D.C., V.K. Eckenrode, W.W. Ward, and F.G. Prendergast. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233.CrossRefGoogle Scholar
  74. Pulz, O., and W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65: 635–648.CrossRefGoogle Scholar
  75. Pulz, O., and K. Scheibenbogen. 1998. Photobioreactors: Design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology 59: 123–151.CrossRefGoogle Scholar
  76. Ragan, M.A., and D.J. Chapman. 1978. A biochemical phylogeny of the protists. Academic Press, New York/London.: 317pp.Google Scholar
  77. Rekha, V., R. Gurusamy, P. Santhanam, A. Shenbaga Devi, and S. Ananth. 2012. Culture and biofuel production efficiency of marine microalgae Chlorella marina and Skeletonema costatum. Indian Journal of Geo-Marine Sciences 41: 152–158.Google Scholar
  78. Richardson, A. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science and Technology 65: 279–295.CrossRefGoogle Scholar
  79. Roger, P.A., and S.A. Kulasooriya. 1980. Blue-green algae and rice. Manila: IRRI 112pp.Google Scholar
  80. Sayre, R.T., R.E. Wagner, S. Sirporanadulsil, and C. Farias. 2001. Transgenic Algae for Delivery of Antigens to Animals. Int. Patent Number W.O. 01/98335 A2.Google Scholar
  81. Schipp, G. 2006. The use of Calanoid copepods in semiintensive, tropical marine fish larviculture. En: Editores: Cruz Sua’rez, L.E., D.R. Marie, M.T. Salazar, M.G. Nieto Lo’pez, D.A. Villarreal Cavazos, A.G. Ortega. Avances en Nutricio’n Acuicola VIII. VIII Simposium Internacional de Nutricio’n Acuicola. 15–17 November, 84–94. Universidad Auto ´noma de Nuevo Leo’n, Me’xico.Google Scholar
  82. Seckbach, J., H. Gross, and M.B. Nathan. 1971. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany 20: 84–90.Google Scholar
  83. Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from algae. National Renewable Energy Laboratory, Golden, CO; Report NREL/TP-580–24190.Google Scholar
  84. Shenbaga Devi. 2010. Studies on mass culture and biofuel production of marine microalgae Dunaliella ap. and Nannochloropsis sp. M.Sc., Thesis, Bharathidasan University, India, 69pp.Google Scholar
  85. Singh, S., B.N. Kate, and U.C. Banerjee. 2005. Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology 25: 73–95.CrossRefGoogle Scholar
  86. Sirenko, L.A., Y.A. Kirpenko, and N.I. Kirpenko. 1999. Influence of metabolites of certain algae on human and animal cell cultures. International Journal on Algae 1: 122–126.CrossRefGoogle Scholar
  87. Soletto, D., L. Binaghi, A. Lodi, J.C.M. Carvalho, and A. Converti. 2005. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243: 217–224.CrossRefGoogle Scholar
  88. Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87–96.CrossRefGoogle Scholar
  89. Sun, M., K. Qian, N. Su, H. Chang, J. Liu, and G. Shen. 2003. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnology Letters 25: 1087–1092.CrossRefGoogle Scholar
  90. Sung, K.D., J.S. Lee, C.S. Shin, S.C. Park, and M.J. Choi. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology 68 (3): 269–273.CrossRefGoogle Scholar
  91. Takano, Hi., H. Takeyama, N. Nakamura, K. Sode, J.G. Burgess, E. Manabe, M. Hirano, and T. Matunaga. 1992. CO2 removal by high-density culutre of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers. Applied Biochemistry and Biotechnology 34/35: 449–458.CrossRefGoogle Scholar
  92. Thajuddin, N., and G. Subramanian. 2005. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science 89: 47–57.Google Scholar
  93. Tsukahara, K., and S. Sawayama. 2005. Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute 48: 251–259.CrossRefGoogle Scholar
  94. Venkateswaran, K., T. Takai, I. Navarro, H. Nakano, H. Hashimoto, and R. Siebeling. 1989. Ecology of Vibrio cholerae non-O1 and Salmonella spp. and role of zooplankton in their seasonal distribution in Fukuyama coastal waters, Japan. Applied and Environmental Microbiology 55: 1591–1598.Google Scholar
  95. Venkataraman, L.V. 1986. Blue green algae as biofertilizer. In CRC, Hand book of microalgal mass culture, ed. A. Richmond, 455–471. Boca Roton: CRC Press.Google Scholar
  96. Vílchez, C., I. Garbayo, M.V. Lobato, and J.M. Vega. 1997. Microalgae-mediated chemicals production and wastes removal. Enzyme and Microbial Technology 20: 562–572.CrossRefGoogle Scholar
  97. Watanabe, Y., N. Ohmura, and H. Saiki. 1992. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Conversion and Management 33 (5–8): 545–552.CrossRefGoogle Scholar
  98. Wilde, E.W., and J.R. Benemann. 1993. Bioremoval of heavy metals by the use of micro-algae. Biotechnology Advances 11: 781–812.CrossRefGoogle Scholar
  99. Yamaguchi, K. 1997. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. Journal of Applied Phycology 8: 487–502.CrossRefGoogle Scholar
  100. Yongmanitchai, W., and O.P. Ward. 1991. Growth of and omega-3-fatty-acid production by Phaeodactylum-tricornutum under different culture conditions. Applied and Environmental Microbiology 57: 419–425.Google Scholar
  101. Yoshihara, K., H. Nagase, K. Eguchi, K. Hirata, and K. Miyamoto. 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor. Journal of Fermentation and Bioengineering 82 (4): 351–354.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Pachiappan
    • 1
  • P. Santhanam
    • 2
  • A. Begum
    • 3
  • B. Balaji Prasath
    • 2
    • 4
  1. 1.Department of Biotechnology, School of BiosciencesPeriyar UniversitySalemIndia
  2. 2.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of BotanyTihu CollegeTihuIndia
  4. 4.Beijing Normal University-Hong Kong Baptist University, United International CollegeZhuhaiChina

Personalised recommendations