Crowdsourcing Background

  • Guoliang Li
  • Jiannan Wang
  • Yudian Zheng
  • Ju Fan
  • Michael J. Franklin


This chapter introduces the background of crowdsourcing. Section 2.1 gives an overview of crowdsourcing, and Sect. 2.2 introduces the crowdsourcing workflow. Next, Sect. 2.3 introduces some widely used crowdsourcing platforms, and Sect. 2.4 discusses existing tutorials, surveys, and books on crowdsourcing. Finally, Sect. 2.5 presents the optimization goals of crowdsourced data management.


  1. 1.
    Amazon mechanical turk.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Amer-Yahia, S., Roy, S.B.: Human factors in crowdsourcing. PVLDB 9(13), 1615–1618 (2016)Google Scholar
  8. 8.
    Chen, L., Lee, D., Milo, T.: Data-driven crowdsourcing: Management, mining, and applications. In: ICDE, pp. 1527–1529. IEEE (2015)Google Scholar
  9. 9.
    Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong, Y., Zhang, C.J.: gmission: a general spatial crowdsourcing platform. PVLDB 7(13), 1629–1632 (2014)CrossRefGoogle Scholar
  10. 10.
    Doan, A., Franklin, M.J., Kossmann, D., Kraska, T.: Crowdsourcing applications and platforms: A data management perspective. PVLDB 4(12), 1508–1509 (2011)Google Scholar
  11. 11.
    Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web. Commun. ACM 54(4), 86–96 (2011)CrossRefGoogle Scholar
  12. 12.
    Fan, J., Li, G., Ooi, B.C., Tan, K., Feng, J.: icrowd: An adaptive crowdsourcing framework. In: SIGMOD, pp. 1015–1030 (2015)Google Scholar
  13. 13.
    Faradani, S., Hartmann, B., Ipeirotis, P.G.: What’s the right price? pricing tasks for finishing on time. In: AAAI Workshop (2011)Google Scholar
  14. 14.
    Gao, J., Li, Q., Zhao, B., Fan, W., Han, J.: Truth discovery and crowdsourcing aggregation: A unified perspective. PVLDB 8(12), 2048–2049 (2015)Google Scholar
  15. 15.
    Groz, B., Milo, T.: Skyline queries with noisy comparisons. In: PODS, pp. 185–198 (2015)Google Scholar
  16. 16.
    Haas, D., Ansel, J., Gu, L., Marcus, A.: Argonaut: Macrotask crowdsourcing for complex data processing. PVLDB 8(12), 1642–1653 (2015)Google Scholar
  17. 17.
    Haas, D., Wang, J., Wu, E., Franklin, M.J.: Clamshell: Speeding up crowds for low-latency data labeling. PVLDB 9(4), 372–383 (2015)Google Scholar
  18. 18.
    Joglekar, M., Garcia-Molina, H., Parameswaran, A.G.: Comprehensive and reliable crowd assessment algorithms. In: ICDE, pp. 195–206 (2015)Google Scholar
  19. 19.
    Ma, F., Li, Y., Li, Q., Qiu, M., Gao, J., Zhi, S., Su, L., Zhao, B., Ji, H., Han, J.: Faitcrowd: Fine grained truth discovery for crowdsourced data aggregation. In: KDD, pp. 745–754 (2015)Google Scholar
  20. 20.
    Marcus, A., Parameswaran, A.G.: Crowdsourced data management: Industry and academic perspectives. Foundations and Trends in Databases 6(1–2), 1–161 (2015)CrossRefGoogle Scholar
  21. 21.
    Ouyang, W.R., Kaplan, L.M., Martin, P., Toniolo, A., Srivastava, M.B., Norman, T.J.: Debiasing crowdsourced quantitative characteristics in local businesses and services. In: IPSN, pp. 190–201 (2015)Google Scholar
  22. 22.
    Verroios, V., Garcia-Molina, H.: Entity resolution with crowd errors. In: ICDE, pp. 219–230 (2015)Google Scholar
  23. 23.
    Verroios, V., Lofgren, P., Garcia-Molina, H.: tdp: An optimal-latency budget allocation strategy for crowdsourced MAXIMUM operations. In: SIGMOD, pp. 1047–1062 (2015)Google Scholar
  24. 24.
    Wang, S., Xiao, X., Lee, C.: Crowd-based deduplication: An adaptive approach. In: SIGMOD, pp. 1263–1277 (2015)Google Scholar
  25. 25.
    Zhao, Z., Wei, F., Zhou, M., Chen, W., Ng, W.: Crowd-selection query processing in crowdsourcing databases: A task-driven approach. In: EDBT, pp. 397–408 (2015)Google Scholar
  26. 26.
    Zheng, Y., Cheng, R., Maniu, S., Mo, L.: On optimality of jury selection in crowdsourcing. In: EDBT, pp. 193–204 (2015)Google Scholar
  27. 27.
    Zheng, Y., Li, G., Cheng, R.: DOCS: domain-aware crowdsourcing system. PVLDB 10(4), 361–372 (2016)Google Scholar
  28. 28.
    Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing: Is the problem solved? PVLDB 10(5), 541–552 (2017)Google Scholar
  29. 29.
    Zheng, Y., Wang, J., Li, G., Cheng, R., Feng, J.: QASCA: A quality-aware task assignment system for crowdsourcing applications. In: SIGMOD, pp. 1031–1046 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guoliang Li
    • 1
  • Jiannan Wang
    • 2
  • Yudian Zheng
    • 3
  • Ju Fan
    • 4
  • Michael J. Franklin
    • 5
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.Twitter Inc.San FranciscoUSA
  4. 4.DEKE Lab & School of InformationRenmin University of ChinaBeijingChina
  5. 5.Department of Computer ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations