Computational Analysis of the GI/G/1 Risk Process Using Roots
Conference paper
First Online:
Abstract
In this paper, we analyze an insurance risk model wherein the arrival of claims and their sizes occur as renewal processes. Using the duality relation in queueing theory and roots method, we derive closed-form expressions for the ultimate ruin probability, the distribution of the deficit at the time of ruin, and the expected time to ruin in terms of the roots of the characteristic equation. Finally, some numerical computations are portrayed with the help of tables.
Keywords
Risk processes Ruin probability Duality Padé approximation Time to ruin GI/G/1 queue Deficit at the time of ruinNotes
Acknowledgements
The third author’s research work was partially supported by NSERC, Canada.
References
- 1.Dickson, D.C.M.: On a class of renewal risk processes. N. Am. Actuar. J. 2(3), 60–68 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 2.Dong, H., Liu, Z.: A class of Sparre Andersen risk process. Front. Math. China 5(3), 517–530 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 3.Dufresne, D.: A general class of risk models. Aust. Actuar. J. 7(4), 755–791 (2011)Google Scholar
- 4.Gerber, H.U., Shiu, E.S.: The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. Insur. Math. Econ. 21(2), 129–137 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 5.Gerber, H.U., Shiu, E.S.: On the time value of ruin. N. Am. Actuar. J. 2(1), 48–72 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 6.Dickson, D., Hipp, C.: Ruin probabilities for Erlang (2) risk processes. Insur. Math. Econ. 22(3), 251–262 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 7.Dickson, D.C., Hipp, C.: On the time to ruin for Erlang (2) risk processes. Insur. Math. Econ. 29(3), 333–344 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 8.Landriault, D., Willmot, G.: On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution. Insur. Math. Econ. 42(2), 600–608 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 9.Gerber, H.U., Shiu, E.S.: The time value of ruin in a Sparre Andersen model. N. Am. Actuar. J. 9(2), 49–69 (2005)Google Scholar
- 10.Li, S., Garrido, J., et al.: On a general class of renewal risk process: analysis of the Gerber-Shiu function. Adv. Appl. Probab. 37(3), 836–856 (2005)Google Scholar
- 11.Dickson, D., Drekic, S.: The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen models. Insur. Math. Econ. 34(1), 97–107 (2004)Google Scholar
- 12.Rodríguez-Martínez, E.V., Cardoso, R.M., Dos Reis, A.D.E.: Some advances on the erlang (n) dual risk model. Astin Bull. 45(01), 127–150 (2015)MathSciNetCrossRefGoogle Scholar
- 13.Asmussen, S., Rolski, T.: Computational methods in risk theory: a matrix-algorithmic approach. Insur. Math. Econ. 10(4), 259–274 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 14.Avram, F., Usabel, M.: Ruin probabilities and deficit for the renewal risk model with phase-type interarrival times. Astin Bull. 34, 315–332 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 15.Thorin, O.: Probabilities of ruin. Scand. Actuar. J. 1982(2), 65–103 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 16.Panda, G., Banik, A.D., Chaudhry, M.L.: Inverting the transforms arising in the \(GI/M/1\) risk process using roots. In: Mathematics and Computing 2013, pp. 297–312. Springer (2014)Google Scholar
- 17.Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, Singapore (2010)CrossRefMATHGoogle Scholar
- 18.Prabhu, N.U.: On the ruin problem of collective risk theory. Ann. Math. Statist. 3, 757–764 (1961)MathSciNetCrossRefMATHGoogle Scholar
- 19.Thampi, K.K., Jacob, M.J.: On a class of renewal queueing and risk processes. J. Risk Financ 11, 204–220 (2010)CrossRefMATHGoogle Scholar
- 20.Drekic, S., Dickson, D.C., Stanford, D.A., Willmot, G.E.: On the distribution of the deficit at ruin when claims are phase-type. Scand. Actuar. J. 2004(2), 105–120 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 21.Frostig, E.: Upper bounds on the expected time to ruin and on the expected recovery time. Adv. Appl. Probab. 36, 377–397 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 22.Chaudhry, M.L., Agarwal, M., Templeton, J.G.: Exact and approximate numerical solutions of steady-state distributions arising in the queue \(GI/G/1\). Queueing Syst. 10(1–2), 105–152 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 23.Kleinrock, L.: Queueing Systems Vol 1: Theory. Wiley-Interscience, New York (1975)Google Scholar
- 24.Komota, Y., Nogami, S., Hoshiko, Y.: Analysis of the GI/G/1 queue by the supplementary variables approach. Electron. Commun. Jpn (Part I: Commun.) 66(5), 10–19 (1983)Google Scholar
- 25.Chaudhry, M.L., Yang, X., Ong, B.: Computing the distribution function of the number of renewals. Am. J. Oper. Res. 3, 380–386 (2013)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018