Fixed Charge Bulk Transportation Problem

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 225)

Abstract

This paper discusses an exact method to solve fixed charge bulk transportation problem (FCBTP). The fixed charge bulk transportation problem is a variant of the classical transportation problem in which a fixed cost is incurred in addition to the bulk transportation cost. This paper comprises of two sections. In Sect. 2, an algorithm based on lexi-search approach is proposed to solve FCBTP which gives the optimal solution in a finite number of iterations. Section 3 reports and corrects the errors which occurred in the paper entitled ‘Solving the fixed charge problem by ranking the extreme point’ by Murty (Oper. Res. 16(2): 268–279, 1968) [24]. Towards the end, some Concluding Remarks are given.

Keywords

Fixed charge bulk transportation problem (FCBTP) Bulk transportation problem (BTP) Lexi-search 

Notes

Acknowledgements

The authors are thankful to the honourable reviewers for their significant comments which have enhanced the quality of our manuscript ‘Fixed Charge Bulk Transportation Problem’ to a great extent.

References

  1. 1.
    Adlakha, V., Kowalski, K.: On the fixed-charge transportation problem. Omega 27(27), 381–388 (1999)CrossRefGoogle Scholar
  2. 2.
    Adlakha, V., Kowalski, K.: A simple heuristic for solving small fixed-charge transportation problems. Omega 31(3), 205–211 (2003)CrossRefGoogle Scholar
  3. 3.
    Adlakha, V., Kowalski, K., Vemuganti, R.R., Lev, B.: More-for-less algorithm for fixed charge transportation problems. OMEGA Int. J. Manag. Sci. 35(1), 116–127 (2007)CrossRefGoogle Scholar
  4. 4.
    Adlakha, V., Kowalski, K., Wang, S., Lev, B., Shen, W.: On approximation of the fixed charge transportation problem. Omega 43, 64–70 (2014)CrossRefGoogle Scholar
  5. 5.
    Aguado, J.: Fixed charge transportation problems: a new heuristic approach based on lagrangean relaxation and the solving of core problems. Ann. Oper. Res. 172, 45–69 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arora, S.R., Ahuja, A.: A Paradox in a fixed charge transportation problem. Indian J. Pure Appl. Math. 31(7), 809–822 (2000)Google Scholar
  7. 7.
    Arora, S., Puri, M.C.: A variant of time minimizing assignment problem. Eur. J. Oper. Res. 110, 314–325 (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Balas, E., Glover, F., Zionts, S.: An additive algorithm for solving linear programs with zero one variables. Oper. Res. INFORMS 13(4), 517–549 (1965)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Balinski, M.L.: Fixed-cost transportation problems. Nav. Res. Logist. Q. 8(01), 41–54 (1961)CrossRefMATHGoogle Scholar
  10. 10.
    Caramia, M., Guerreio, F.: A heuristic approach to long-haul freight transportation with multiple objective functions. OMEGA Int. J. Manag. Sci. 37, 600–614 (2009)CrossRefGoogle Scholar
  11. 11.
    Cooper, L., Drebes, C.: An approximate solution method for the fixed charge problem. Nav. Res. Logist. Q. 14(1) (1967)Google Scholar
  12. 12.
    Cooper, L.: The fixed charge problem-I: a new heuristic method. Comput. Math. Appl. 1(1), 89–95 (1975)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cooper, L., Olson, A.M.: Random Perturbations and MI-MII Heuristics for the Fixed Charge ProblemGoogle Scholar
  14. 14.
    De Maio, A., Roveda, C.: An all zero-one algorithm for a certain class of transportation problems. INFORMS 19(6), 1406–1418 (1969)MATHGoogle Scholar
  15. 15.
    Denzler, D.R.: An approximative algorithm for the fixed charge problem. Nav. Res. Logist. Q. 16(3) (1969)Google Scholar
  16. 16.
    Gray, P.: Exact solution of the fixed-charge transportation problem. Oper. Res. 19(6), 1529–1538 (1971)CrossRefMATHGoogle Scholar
  17. 17.
    Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S., Tavakkoli-Moghaddam, R.: Addressing a non linear fixed-charge transportation using a spanning tree based genetic algorithm. Comput. Ind. Eng. 59, 259–271 (2010)CrossRefGoogle Scholar
  18. 18.
    Jo, J., Li, Y., Gen, M.: Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Comput. Ind. Eng. 53, 290–298 (2007)CrossRefGoogle Scholar
  19. 19.
    Kowalski, K., Lev, B.: On step fixed-charge transportation problem. OMEGA Int. J. Manag. Sci. 36(5), 913–917 (2008)CrossRefGoogle Scholar
  20. 20.
    Kowalski, K., Lev, B., Shen, W., Tu, Y.: A fast and simple branching algorithm for solving small scale fixed-charge transportation problem. Oper. Res. Perspect. 1(1), 1–5 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, S.-T.: The total cost bounds of transportation problem with varying demand and supply. OMEGA Int. J. Manag. Sci. 31(4), 247–251 (2003)CrossRefGoogle Scholar
  22. 22.
    Ma, H., Miao, Z., Lim, A., Rodrigues, B.: Cross docking distribution networks with setup cost and time window constraint. OMEGA Int. J. Manag. Sci. 39(1), 64–72 (2011)CrossRefGoogle Scholar
  23. 23.
    Murthy, M.S.: A bulk transportation problem. OPSEARCH 13(3–4), 143–155 (1976)MathSciNetGoogle Scholar
  24. 24.
    Murty, K.G.: Solving the fixed charge problem by ranking the extreme points. Oper. Res. 16(2), 268–279 (1968)CrossRefMATHGoogle Scholar
  25. 25.
    Ortega, F., Wolsey, L.: A branch and cut algorithm for the single-commodity, uncapacitated, fixed charge network flow problem. Networks 41, 143–158 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Puri, M.C., Swarup, K.: A systematic extreme point enumeration procedure for fixed charge problem. Trab Estad y Investig Oper. 25(1), 99–108 (1974)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Robers, P., Cooper, L.: A study of the fixed charge transportation problem. Comput. Math. Appl. 2(2), 125–135 (1976)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sadagopan, S., Ravindran, A.: A vertex ranking algorithm for the fixed-charge transportation problem. J. Optim. Theory Appl. 37(2) (1982)Google Scholar
  29. 29.
    Srinivasan, V., Thompson, G.L.: An algorithm for assigning uses to sources in a special class of transportation problems. INFORMS 21(1), 284–295 (1973)MATHGoogle Scholar
  30. 30.
    Steinberg, D.I.: The fixed charge problem. Nav. Res. Logist. Q. 17(2) (1970)Google Scholar
  31. 31.
    Thirwani, D.: A note on fixed charge Bi-Criterion transportation problem with enhanced flow. Indian J. Pure Appl. Math. 29(5), 565–571 (1998)Google Scholar
  32. 32.
    Walker, W.: A heuristic adjacent extreme point algorithm for fixed charge problem. Manag. Sci. 22, 587–596 (1976)CrossRefMATHGoogle Scholar
  33. 33.
    Warren, M.H, George, B.D.: The fixed charge problem. RAND Corp. RM-1383, 413–424 (1954)Google Scholar
  34. 34.
    Warren, M.H., Hoffman, A.J.: Extreme varieties, concave functions, and the fixed charge problem. Commun. Pure Appl. Math. XIV, 355–369(1961)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Indira Gandhi Delhi Technical University For WomenNew DelhiIndia

Personalised recommendations