A Hybrid Heuristic for Restricted 4-Dimensional TSP (r-4DTSP)

  • Arindam Roy
  • Goutam Chakraborty
  • Indadul Khan
  • Samir Maity
  • Manoranjan Maiti
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 225)

Abstract

In this paper, we proposed a hybridized soft computing technique to solve a restricted 4-dimensional TSP (r-4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. Here, some restrictions on paths and conveyances are imposed. The algorithm is a hybridization of genetic algorithm (GA) and swap operator-based particle swarm optimization (PSO). The initial solutions are produced by proposed GA which used as swarm in PSO. The said hybrid algorithm (GA-PSO) is tested against some test functions, and efficiency of the proposed algorithm is established. The r-4DTSPs are considered with crisp costs. The models are illustrated with some numerical data.

Keywords

Hybrid algorithm GA-PSO r-4DTSP 

Notes

Acknowledgements

This research article is supported by University Grant Commission of India by grant number PSW-150/14-15 (ERO).

References

  1. 1.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The traveling salesman problem: G. E. Re Guided tour of combinatorial optimization. Wiley, New York (1985)Google Scholar
  2. 2.
    Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. Inform. J. Comput. 14(4), 403–417 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chang, T., Wan, Y., Tooi, W.: A stochastic dynamic travelling salesman problem with hard time windows. Eur. J. Op. Res. 198(3), 748–759 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Petersen, H.L., Madsen, O.B.G.: The double travelling salesman problem with multiple stack—formulation heuristic solution approaches. Eur. J. Op. Res. 198, 339–347 (2009)Google Scholar
  5. 5.
    Majumder, A.K., Bhunia, A.K.: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. J. Comput. Appl. Math. 235(9), 3063–3078 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Moon, C., Ki, J., Choi, G., Seo, Y.: An efficient genetic algorithm for the TSP with precedence constraints. EJOR 140, 606–617 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Maity, S., Roy, A., Maiti, M., Modified, A.: Genetic algorithm for solving uncertain constrained solid travelling salesman problems. Comput. Ind. Eng. 83, 273–296 (2015)CrossRefGoogle Scholar
  8. 8.
    Maity, S., Roy, A., Maiti, M.: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem. Expert Syst. Appl. 46, 196–223 (2016)CrossRefGoogle Scholar
  9. 9.
    Ghaziri, H., Osman, I.H.: A neural network algorithm for TSP with backhauls. Comput. Ind. Eng. 44(2), 267–281 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, S.M., Chien, C.Y.: Solving the TSP based on the genetic simulated annealing ant colony system with PSO techniques. Expert Syst. Appl. 38(12), 14439–14450 (2011)CrossRefGoogle Scholar
  11. 11.
    Bluma, C., Puchingerb, J., Raidlc, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11, 4135–4151 (2011)CrossRefGoogle Scholar
  12. 12.
    Ardalan, Z., Karimi, S., Poursabzi, O., Nader, B.: A novel imperialist competitive algorithm for generalized TSP. Appl. Soft Comput. xxx, XX–XX (2014)Google Scholar
  13. 13.
    Psychas, I.-D., Delimpasi, E., Marinakis, Y.: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem. Expert Syst. Appl.  https://doi.org/10.1016/j.eswa.2015.07.051
  14. 14.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)Google Scholar
  15. 15.
    Chen, Y.L.: Particle swarm optimization survey for traveling salesman problem. Master Thesis. Department of Industrial Engineering and Management National Taipei University of Technology, July 2006Google Scholar
  16. 16.
    Chen, C.-Y., Feng, H.-M.: Hybrid intelligent vision-based car-like vehicle backing systems design. Expert Syst. Appl. 36, 7500–7509 (2009)CrossRefGoogle Scholar
  17. 17.
    Feng, H.M.: Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70, 241–251 (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, K., Hunang, L., Zhou, C.-G., Pang, W.: Particle swarm optimization for TSP, 2nd Intr. In: IEEE Conference on Machine Learning and Cybernetics, pp. 1583–1585 (2003)Google Scholar
  19. 19.
    Mahi, M., Baykan, O.K., Kodaz, H.: A new hybrid method based on PSO, ACO and 3-Opt algorithm for TSP. Appl. Soft Comput. 30, 484–490 (2015)CrossRefGoogle Scholar
  20. 20.
    Marinakis, Y., Marinaki, M., Dounias, G.: A hybrid PSO algorithm for vehicle routing problem. Eng. Appl. Artif. Intel. 23, 464–472 (2010)CrossRefMATHGoogle Scholar
  21. 21.
    Liu, B.: Theory and Practice of Uncertain Programming. Physica-Verlag, Heidelberg (2002)CrossRefMATHGoogle Scholar
  22. 22.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Arindam Roy
    • 1
  • Goutam Chakraborty
    • 2
  • Indadul Khan
    • 3
  • Samir Maity
    • 3
  • Manoranjan Maiti
    • 4
  1. 1.Department of Computer SciencePrabhat Kumar CollegePurba MedinipurIndia
  2. 2.Faculty of Software and Information ScienceIwate Prefectural UniversityTakizawaJapan
  3. 3.Department of Computer ScienceVidyasagar UniversityMedinipurIndia
  4. 4.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMedinipurIndia

Personalised recommendations