Biodiversity and the Ecology of Emerging Infectious Diseases

Conference paper
Part of the Mathematics for Industry book series (MFI, volume 28)

Abstract

The question of how biodiversity influences the emergence of infectious diseases is the subject of ongoing research. A set of nonlinear differential equations is been used to explore the interactions between ecology and epidemiology. The model allows for frequency-dependent transmission of infection within host species, and density-dependent transmission between species, via the environment or a vector. Three examples are discussed. It is shown that removing a pathogen may increase a consumer population, decreasing its resource. It is then shown that the presence of a pathogen could enable a predator and a prey species to coexist. Finally the dilution effect, by which increasing biodiversity reduces the transmission of an infectious disease, is investigated.

Keywords

Biodiversity Ecology Epidemiology Infectious diseases 

References

  1. 1.
    M.E.J. Woolhouse, H. Howey, E. Gaunt et al., Temporal trends in the discovery of human viruses. Proc. R. Soc. Sers. B 275, 2111–2115 (2008)CrossRefGoogle Scholar
  2. 2.
    N.D. Wolfe, C.P. Dunavan, J. Diamond, Origins of major human infectious diseases. Nature 447, 279–283 (2007)CrossRefGoogle Scholar
  3. 3.
    M.E.J. Woolhouse, How to make predictions about future infectious disease risks. Phil. Trans. R. Soc. Lond. B 366, 2045–2054 (2011)CrossRefGoogle Scholar
  4. 4.
    M.E.J. Woolhouse, D.T. Haydon, R. Antia, Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244 (2005)CrossRefGoogle Scholar
  5. 5.
    M.E.J. Woolhouse, F. Scott, Z. Hudson et al., Human viruses: discovery and emergence. Phil. Trans. R. Soc. Lond. B 367, 2864–2871 (2012)CrossRefGoogle Scholar
  6. 6.
    A.R. McLean, R.M. May, J. Pattison et al., SARS: A Case Study in Emerging Infections (Oxford University Press, Oxford, 2005)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, J.D. Sugimoto, N.E. Basta et al., The transmissibility and control of pandemic influenza A (H1N1) virus. Science 326, 729–733 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Milne, J. Kelso, H. Kelly, Strategies for mitigating an influenza pandemic with pre-pandemic H5N1 vaccines. J. R. Soc. Interface 7, 573–586 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Watanabe, M.S. Ibrahim, Y. Suzuki et al., The changing nature of avian influenza A virus (H5N1). Trends Microbiol. 20, 11–20 (2012)CrossRefGoogle Scholar
  10. 10.
    D.T.S. Hayman, Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Sers. B 282, 20142591 (2015)CrossRefGoogle Scholar
  11. 11.
    R.K. Plowright, P. Eby, P.J. Hudson et al., Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. Sers. B 282, 20142124 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Camacho, A. Kucharski, S. Funk et al., Potential for large outbreaks of Ebola virus disease. Epidemics 9, 70–78 (2014)CrossRefGoogle Scholar
  13. 13.
    E.C. Hayden, The Ebola questions. Nature 514, 554–557 (2014)CrossRefGoogle Scholar
  14. 14.
    M.G. Roberts, Fast-spreading killers: how Ebola compares with other diseases. The Conversation. published online 10 Nov 2014Google Scholar
  15. 15.
    WHO Ebola Response Team, Ebola virus disease in West Africa the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371, 1481–1495 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Bennett, R. Jones, G. Keating et al., Health and equity impacts of climate change in Aotearoa-New Zealand, and health gains from climate action. N. Z. Med. J. 127, 16–31 (2014)Google Scholar
  17. 17.
    J.G. Derraik, D. Slaney, E.R. Nye et al., Chikungunya virus: a novel and potentially serious threat to New Zealand and the South Pacific islands. Am. J. Trop. Med. Hyg. 83, 755–759 (2010)CrossRefGoogle Scholar
  18. 18.
    D. Musso, V.M. Cao-Lormeau, D.J. Gubler, Zika virus: following the path of dengue and chikungunya? Lancet 386, 243–244 (2015)CrossRefGoogle Scholar
  19. 19.
    R.M. May, Will a large complex system be stable? Nature 238, 413–414 (1972)CrossRefGoogle Scholar
  20. 20.
    S. Allesina, S. Tang, Stability criteria for complex ecosystems. Nature 483, 205–208 (2012)CrossRefGoogle Scholar
  21. 21.
    I. Donohue, O.L. Petchey, J.M. Montoya et al., On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Mougi, M. Kondoh, Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    A.-M. Neutel, J.A.P. Heesterbeek, P.C. de Ruiter, Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002)CrossRefGoogle Scholar
  24. 24.
    R. Bagchi, R.E. Gallery, S. Gripenberg et al., Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014)CrossRefGoogle Scholar
  25. 25.
    J.R. Britton, Introduced parasites in food webs: new species, shifting structures? Trends Ecol. Evol. 28, 93–99 (2013)CrossRefGoogle Scholar
  26. 26.
    A.P. Dobson, K.D. Lafferty, A.M. Kuris et al., Homage to Linnaeus: how many parasites? How many hosts? PNAS 105, 11482–11489 (2008)CrossRefGoogle Scholar
  27. 27.
    J.A. Dunne, K.D. Lafferty, A.P. Dobson et al., Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013)CrossRefGoogle Scholar
  28. 28.
    P.J. Hudson, A.P. Dobson, K.D. Lafferty, Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006)CrossRefGoogle Scholar
  29. 29.
    K.D. Lafferty, A.P. Dobson, A.M. Kuris, Parasites dominate food web links. PNAS 103, 11211–11216 (2006)CrossRefGoogle Scholar
  30. 30.
    K.D. Lafferty, S. Allesina, M. Arim et al., Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Selakovic, P.C. de Ruiter, J.A.P. Heesterbeek, Infectious disease agents mediate interaction in food webs and ecosystems. Proc. R. Soc. Sers. B 281, 20132709 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Keesing, L.K. Belden, P. Daszak et al., Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010)CrossRefGoogle Scholar
  33. 33.
    M.G. Roberts, J.A.P. Heesterbeek, Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology. J. Math. Biol. 66, 1045–1064 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The construction of next-generation matrices for compartmental epidemic systems. J. R. Soc. Interface 7, 873–885 (2010)CrossRefGoogle Scholar
  35. 35.
    O. Diekmann, J.A.P. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics (Princeton University Press, Princeton, 2013)MATHGoogle Scholar
  36. 36.
    S.B. Carroll, The Serengeti Rules (Princeton University Press, Princeton, 2016)CrossRefGoogle Scholar
  37. 37.
    M. Buhnerkempe, M.G. Roberts, A.P. Dobson, J.A.P. Heesterbeek et al., Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10, 26–30 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Natural and Mathematical Sciences, New Zealand Institute for Advanced Study, Infectious Disease Research CentreMassey UniversityAlbany, AucklandNew Zealand
  2. 2.Faculty of Veterinary Medicine, Department of Farm Animal HealthUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations