Bacterial Mechanosensitive Channels

  • Tim RasmussenEmail author
  • Akiko Rasmussen
Part of the Subcellular Biochemistry book series (SCBI, volume 87)


Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.


Mechanosensitive channels Lipid-protein interaction Hypo-osmotic shock Channel mechanism Bacterial stress response 


  1. Ajouz B, Berrier C, Besnard M et al (2000) Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J Biol Chem 275:1015–1022PubMedCrossRefGoogle Scholar
  2. Akitake B, Anishkin A, Sukharev S (2005) The “dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125:143–154PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akitake B, Anishkin A, Liu N, Sukharev S (2007) Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat Struct Mol Biol 14:1141–1149PubMedCrossRefGoogle Scholar
  4. Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86:2883–2895PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anishkin A, Chiang C-S, Sukharev S (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125:155–170PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anishkin A, Akitake B, Sukharev S (2008a) Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J 94:1252–1266PubMedCrossRefGoogle Scholar
  7. Anishkin A, Kamaraju K, Sukharev S (2008b) Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol 132:67–83PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anishkin A, Akitake B, Kamaraju K et al (2010) Hydration properties of mechanosensitive channel pores define the energetics of gating. J Phys Condens Matter 22:454120PubMedCrossRefGoogle Scholar
  9. Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111:7898–7905PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balleza D, Gómez-Lagunas F (2009) Conserved motifs in mechanosensitive channels MscL and MscS. Eur Biophys J 38:1013–1027PubMedCrossRefGoogle Scholar
  11. Balleza D, Gómez-Lagunas F, Quinto C (2010) Cloning and functional expression of an MscL ortholog from rhizobium etli: characterization of a mechanosensitive channel. J Membr Biol 234:13–27PubMedCrossRefGoogle Scholar
  12. Bartlett JL, Levin G, Blount P (2004) An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc Natl Acad Sci U S A 101:10161–10165PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587PubMedCrossRefGoogle Scholar
  14. Battle AR, Petrov E, Pal P, Martinac B (2009) Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Lett 583:407–412PubMedCrossRefGoogle Scholar
  15. Battle AR, Ridone P, Bavi N et al (2015) Lipid-protein interactions: lessons learned from stress. Biochim Biophys Acta 1848:1744–1756PubMedCrossRefGoogle Scholar
  16. Bavi N, Cortes DM, Cox CD et al (2016a) The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat Commun 7:11984PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bavi O, Cox CD, Vossoughi M et al (2016b) Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membr (Basel) 6:14CrossRefGoogle Scholar
  18. Becker M, Börngen K, Nomura T et al (2013) Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 1828:1230–1240PubMedCrossRefGoogle Scholar
  19. Belyy V, Kamaraju K, Akitake B et al (2010) Adaptive behavior of bacterial mechanosensitive channels is coupled to membrane mechanics. J Gen Physiol 135:641–652PubMedPubMedCentralCrossRefGoogle Scholar
  20. Berrier C, Besnard M, Ajouz B et al (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187PubMedCrossRefGoogle Scholar
  21. Berrier C, Pozza A, de Lacroix de Lavalette A et al (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288:27307–27314PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R (2012) Single-cell census of mechanosensitive channels in living bacteria. PLoS One 7:e33077PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197:231–237PubMedCrossRefGoogle Scholar
  24. Bilston LE, Mylvaganam K (2002) Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett 512:185–190PubMedCrossRefGoogle Scholar
  25. Birkner JP, Poolman B, Koçer A (2012) Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution. Proc Natl Acad Sci U S A 109:12944–12949PubMedPubMedCentralCrossRefGoogle Scholar
  26. Blount P, Sukharev SI, Schroeder MJ et al (1996) Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Natl Acad Sci U S A 93:11652–11657PubMedPubMedCentralCrossRefGoogle Scholar
  27. Blount P, Sukharev SI, Moe PC et al (1999) Mechanosensitive channels of bacteria. Methods Enzymol 294:458–482PubMedCrossRefGoogle Scholar
  28. Boer M, Anishkin A, Sukharev S (2011) Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time. Biochemistry 50:4087–4096PubMedPubMedCentralCrossRefGoogle Scholar
  29. Booth I (2014) Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr Opin Microbiol 18:16–22PubMedPubMedCentralCrossRefGoogle Scholar
  30. Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809PubMedPubMedCentralCrossRefGoogle Scholar
  31. Booth IR, Edwards MD, Black S et al (2007a) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440PubMedCrossRefGoogle Scholar
  32. Booth IR, Edwards MD, Black S et al (2007b) Physiological analysis of bacterial mechanosensitive channels. Methods Enzymol 428:47–61PubMedCrossRefGoogle Scholar
  33. Booth IR, Rasmussen T, Edwards MD et al (2011) Sensing bilayer tension: bacterial mechanosensitive channels and their gating mechanisms. Biochem Soc Trans 39:733–740PubMedCrossRefGoogle Scholar
  34. Booth IR, Miller S, Müller A, Lehtovirta-Morley L (2015) The evolution of bacterial mechanosensitive channels. Cell Calcium 57:140–150PubMedCrossRefGoogle Scholar
  35. Börngen K, Battle AR, Möker N et al (2010) The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim Biophys Acta 1798:2141–2149PubMedCrossRefGoogle Scholar
  36. Böttcher B, Prazak V, Rasmussen A et al (2015) The structure of YnaI implies structural and mechanistic conservation in the MscS family of mechanosensitive channels. Structure 23:1705–1714PubMedPubMedCentralCrossRefGoogle Scholar
  37. Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352:20–32PubMedCrossRefGoogle Scholar
  38. Brohawn SG, Campbell EB, MacKinnon R (2014a) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130PubMedPubMedCentralCrossRefGoogle Scholar
  39. Brohawn SG, Su Z, MacKinnon R (2014b) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K + channels. Proc Natl Acad Sci 111:3614–3619PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bucarey SA, Penn K, Paul L et al (2012) Genetic complementation of the obligate marine actinobacterium Salinispora tropica with the large mechanosensitive channel gene mscL rescues cells from osmotic downshock. Appl Environ Microbiol 78:4175–4182PubMedPubMedCentralCrossRefGoogle Scholar
  41. Buda R, Liu Y, Yang J et al (2016) Dynamics of Escherichia coli ’s passive response to a sudden decrease in external osmolarity. Proc Natl Acad Sci 113:E5838–E5846PubMedPubMedCentralCrossRefGoogle Scholar
  42. Caldwell DB, Malcolm HR, Elmore DE, Maurer JA (2010) Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. Biochim Biophys Acta 1798:1750–1756PubMedCrossRefGoogle Scholar
  43. Carney J, East JM, Mall S et al (2006) Fluorescence quenching methods to study lipid-protein interactions. Curr Protoc Protein Sci Chapter 19:Unit 19.12Google Scholar
  44. Chang G, Spencer R, Lee A et al (1998) Structure of the MscL homolog from mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226PubMedCrossRefGoogle Scholar
  45. Chiang C-S, Anishkin A, Sukharev S (2004) Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys J 86:2846–2861PubMedPubMedCentralCrossRefGoogle Scholar
  46. Colombo G, Marrink SJ, Mark AE (2003) Simulation of MscL gating in a bilayer under stress. Biophys J 84:2331–2337PubMedPubMedCentralCrossRefGoogle Scholar
  47. Corry B, Martinac B (2008) Bacterial mechanosensitive channels: experiment and theory. Biochim Biophys Acta 1778:1859–1870PubMedCrossRefGoogle Scholar
  48. Cox C, Nomura T, Ziegler C et al (2013) Selectivity mechanism of the mechanosensitive channel MscS revealed by probing channel subconducting states. Nat Commun 4:2137PubMedCrossRefGoogle Scholar
  49. Cox C, Nakayama Y, Nomura T, Martinac B (2015) The evolutionary “tinkering”of MscS-like channels: generation of structural and functional diversity. Pflugers Arch 467:3–13PubMedCrossRefGoogle Scholar
  50. Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73:1925–1931PubMedPubMedCentralCrossRefGoogle Scholar
  51. Cui C, Smith DO, Adler J (1995) Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by whole-cell patch clamp recording. J Membr Biol 144:31–42PubMedCrossRefGoogle Scholar
  52. Doerner JF, Febvay S, Clapham DE (2012) Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat Commun 3:990PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dorwart MR, Wray R, Brautigam CA et al (2010) S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol 8:e1000555PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494PubMedCrossRefGoogle Scholar
  55. Edwards MD, Li Y, Kim S et al (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struc. Mol Biol 12:113–119Google Scholar
  56. Edwards MD, Bartlett W, Booth IR (2008) Pore mutations of the Escherichia coli MscS channel affect desensitization but not ionic preference. Biophys J 94:3003–3013PubMedCrossRefGoogle Scholar
  57. Edwards MD, Black S, Rasmussen T et al (2012) Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 6:272–281PubMedPubMedCentralCrossRefGoogle Scholar
  58. Falke LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237:141–144PubMedCrossRefGoogle Scholar
  59. Folgering JHA, Moe PC, Schuurman-Wolters GK et al (2005) Lactococcus lactis uses MscL as its principal mechanosensitive channel. J Biol Chem 280:8784–8792PubMedCrossRefGoogle Scholar
  60. Gandhi CS, Walton TA, Rees DC (2011) OCAM: a new tool for studying the oligomeric diversity of MscL channels. Protein Sci 20:313–326PubMedCrossRefGoogle Scholar
  61. Goulian M, Mesquita ON, Fygenson DK et al (1998) Gramicidin channel kinetics under tension. Biophys J 74:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  62. Grajkowski W, Kubalski A, Koprowski P (2005) Surface changes of the mechanosensitive channel MscS upon its activation, inactivation, and closing. Biophys J 88:3050–3059PubMedPubMedCentralCrossRefGoogle Scholar
  63. Grillet N, Kazmierczak P, Xiong W et al (2009) The mechanotransduction machinery of hair cells. Sci Signal 2:pt5PubMedCrossRefGoogle Scholar
  64. Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80:2074–2081PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gustin M, Zhou X, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765PubMedCrossRefGoogle Scholar
  66. Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 66:113–137PubMedCrossRefGoogle Scholar
  67. Hase CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329–18334PubMedCrossRefGoogle Scholar
  68. Häse CC, Minchin RF, Kloda A, Martinac B (1997) Cross-linking studies and membrane localization and assembly of radiolabelled large mechanosensitive ion channel (MscL) of Escherichia coli. Biochem Biophys Res Commun 232:777–782PubMedCrossRefGoogle Scholar
  69. Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19:1356–1369PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503PubMedCrossRefGoogle Scholar
  71. Hoffmann T, Boiangiu C, Moses S, Bremer E (2008) Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl Environ Microbiol 74:2454–2460PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7:735–739PubMedCrossRefGoogle Scholar
  73. Iscla I, Blount P (2012) Sensing and responding to membrane tension: the bacterial MscL channel as a model system. Biophys J 103:169–174PubMedPubMedCentralCrossRefGoogle Scholar
  74. Iscla I, Levin G, Wray R, Blount P (2007) Disulfide trapping the mechanosensitive channel MscL into a gating-transition state. Biophys J 92:1224–1232PubMedCrossRefGoogle Scholar
  75. Iscla I, Wray R, Blount P (2008) On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys J 95:2283–2291PubMedPubMedCentralCrossRefGoogle Scholar
  76. Iscla I, Wray R, Blount P (2011) The oligomeric state of the truncated mechanosensitive channel of large conductance shows no variance in vivo. Protein Sci 20:1638–1642PubMedPubMedCentralCrossRefGoogle Scholar
  77. Iscla I, Eaton C, Parker J et al (2013) Improving the design of a MscL-based triggered nanovalve. Biosensors 3:171–184PubMedPubMedCentralCrossRefGoogle Scholar
  78. Iscla I, Wray R, Wei S et al (2014) Streptomycin potency is dependent on MscL channel expression. Nat Commun 5:4891PubMedPubMedCentralCrossRefGoogle Scholar
  79. Iscla I, Wray R, Blount P et al (2015) A new antibiotic with potent activity targets MscL. J Antibiot (Tokyo) 68:453–462CrossRefGoogle Scholar
  80. Kakuda T, Koide Y, Sakamoto A, Takai S (2012) Characterization of two putative mechanosensitive channel proteins of Campylobacter jejuni involved in protection against osmotic downshock. Vet Microbiol 160:53–60PubMedCrossRefGoogle Scholar
  81. Kamaraju K, Gottlieb PA, Sachs F, Sukharev S (2010) Effects of GsMTx4 on bacterial mechanosensitive channels in inside-out patches from giant spheroplasts. Biophys J 99:2870–2878PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kasha M (1952) Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J Chem Phys 20:71CrossRefGoogle Scholar
  83. Killian JA, von Heijne G (2000) How proteins adapt to a membrane–water interface. Trends Biochem Sci 25:429–434PubMedCrossRefGoogle Scholar
  84. Kloda A, Martinac B (2001a) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J 20:1888–1896PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kloda A, Martinac B (2001b) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80:229–240PubMedPubMedCentralCrossRefGoogle Scholar
  86. Koçer A (2015) Mechanisms of mechanosensing – mechanosensitive channels, function and re-engineering. Curr Opin Chem Biol 29:120–127PubMedCrossRefGoogle Scholar
  87. Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309:755–758PubMedCrossRefGoogle Scholar
  88. Koçer A, Walko M, Bulten E et al (2006) Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Ed 45:3126–3130CrossRefGoogle Scholar
  89. Koçer A, Walko M, Feringa BL (2007) Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL. Nat Protoc 2:1426–1437PubMedCrossRefGoogle Scholar
  90. Kong Y, Shen Y, Warth TE, Ma J (2002) Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc Natl Acad Sci U S A 99:5999–6004PubMedPubMedCentralCrossRefGoogle Scholar
  91. Koprowski P, Kubalski A (1998) Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J Membr Biol 164:253–262PubMedCrossRefGoogle Scholar
  92. Koprowski P, Grajkowski W, Balcerzak M et al (2015) Cytoplasmic domain of MscS interacts with cell division protein FtsZ: a possible non-channel function of the mechanosensitive channel in Escherichia coli. PLoS One 10:e0127029PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lai J, Poon Y, Kaiser J, Rees D (2013) Open and shut: crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and Helicobacter at 4.4 Å and 4.1 Å resolutions. Protein Sci 22:502–509PubMedPubMedCentralCrossRefGoogle Scholar
  94. Levina N, Tötemeyer S, Stokes NR et al (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737PubMedPubMedCentralCrossRefGoogle Scholar
  95. Li Y, Moe PC, Chandrasekaran S et al (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21:5323–5330PubMedPubMedCentralCrossRefGoogle Scholar
  96. Li C, Edwards MD, Jeong H et al (2007) Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK. Mol Microbiol 64:560–574PubMedPubMedCentralCrossRefGoogle Scholar
  97. Li G-W, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li J, Guo J, Ou X et al (2015) Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion. Proc Natl Acad Sci U S A 112:10726–10731PubMedPubMedCentralCrossRefGoogle Scholar
  99. Liu Z, Gandhi CS, Rees DC (2009) Structure of a tetrameric MscL in an expanded intermediate state. Nature 461:120–124PubMedPubMedCentralCrossRefGoogle Scholar
  100. Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci U S A 107:19856–19860PubMedPubMedCentralCrossRefGoogle Scholar
  101. Löw C, Yau YH, Pardon E et al (2013) Nanobody mediated crystallization of an archeal mechanosensitive channel. PLoS One 8:e77984PubMedPubMedCentralCrossRefGoogle Scholar
  102. Machiyama H, Tatsumi H, Sokabe M (2009) Structural changes in the cytoplasmic domain of the mechanosensitive channel MscS during opening. Biophys J 97:1048–1057PubMedPubMedCentralCrossRefGoogle Scholar
  103. Maksaev G, Haswell ES (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci U S A 109:19015–19020PubMedPubMedCentralCrossRefGoogle Scholar
  104. Malcolm HR, Maurer JA (2012) The mechanosensitive channel of small conductance (MscS) superfamily: not just mechanosensitive channels anymore. Chembiochem 13:2037–2043PubMedCrossRefGoogle Scholar
  105. Malcolm HR, Elmore DE, Maurer JA (2012a) Mechanosensitive behavior of bacterial cyclic nucleotide gated (bCNG) ion channels: insights into the mechanism of channel gating in the mechanosensitive channel of small conductance superfamily. Biochem Biophys Res Commun 417:972–976PubMedCrossRefGoogle Scholar
  106. Malcolm HR, Heo Y-Y, Caldwell DB et al (2012b) Ss-bCNGa: a unique member of the bacterial cyclic nucleotide gated (bCNG) channel family that gates in response to mechanical tension. Eur Biophys J 41:1003–1013PubMedCrossRefGoogle Scholar
  107. Martinac B, Buechner M, Delcour AH et al (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci 84:2297–2301PubMedPubMedCentralCrossRefGoogle Scholar
  108. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263PubMedCrossRefGoogle Scholar
  109. Mika JT, Birkner JP, Poolman B, Koçer A (2013) On the role of individual subunits in MscL gating: “all for one, one for all?”. FASEB J 27:882–892PubMedCrossRefGoogle Scholar
  110. Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44:12239–12244PubMedCrossRefGoogle Scholar
  111. Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28:583–592PubMedCrossRefGoogle Scholar
  112. Moe PC, Levin G, Blount P (2000) Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem 275:31121–31127PubMedCrossRefGoogle Scholar
  113. Naismith JH, Booth IR (2012) Bacterial mechanosensitive channels – MscS: evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–177PubMedPubMedCentralCrossRefGoogle Scholar
  114. Najem JS, Dunlap MD, Rowe ID et al (2015) Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci Rep 5:13726PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nakamaru Y, Takahashi Y, Unemoto T, Nakamura T (1999) Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. FEBS Lett 444:170–172PubMedCrossRefGoogle Scholar
  116. Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nakayama Y, Iida H (2014) Organellar mechanosensitive channels involved in hypo-osmoregulation in fission yeast. Cell Calcium 56:467–471PubMedCrossRefGoogle Scholar
  118. Nakayama Y, Yoshimura K, Iida H (2012) Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response. Nat Commun 3:1020PubMedCrossRefGoogle Scholar
  119. Nakayama Y, Yoshimura K, Iida H (2013) Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys J 105:1366–1375PubMedPubMedCentralCrossRefGoogle Scholar
  120. Nakayama Y, Mustapić M, Ebrahimian H et al (2015) Magnetic nanoparticles for “smart liposomes”. Eur Biophys J 44:647–654PubMedCrossRefGoogle Scholar
  121. Nanatani K, Shijuku T, Akai M et al (2014) Characterization of the role of a mechanosensitive channel in osmotic down shock adaptation in Synechocystis sp PCC 6803. Channels 7:238–242CrossRefGoogle Scholar
  122. Neder J, West B, Nielaba P, Schmid F (2010) Coarse-grained simulations of membranes under tension. J Chem Phys 132:115101PubMedCrossRefGoogle Scholar
  123. Nomura T, Sokabe M, Yoshimura K (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91:2874–2881PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nomura T, Cranfield CG, Deplazes E et al (2012) Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci U S A 109:8770–8775PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ou X, Blount P, Hoffman RJ, Kung C (1998) One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc Natl Acad Sci 95:11471–11475PubMedPubMedCentralCrossRefGoogle Scholar
  126. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442PubMedCrossRefGoogle Scholar
  127. Perozo E, Cortes DM, Sompornpisut P et al (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948PubMedCrossRefGoogle Scholar
  128. Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703PubMedCrossRefGoogle Scholar
  129. Petrov E, Palanivelu D, Constantine M et al (2013) Patch-clamp characterization of the MscS-like Mechanosensitive Channel from Silicibacter pomeroyi. Biophys J 104:1426–1434PubMedPubMedCentralCrossRefGoogle Scholar
  130. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pivetti CD, Yen M-R, Miller S et al (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pliotas C, Ward R, Branigan E et al (2012) Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. Proc Natl Acad Sci U S A 109:E2675–E2682PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pliotas C, Dahl ACE, Rasmussen T et al (2015) The role of lipids in mechanosensation. Nat Struct Mol Biol 22:991–998PubMedPubMedCentralCrossRefGoogle Scholar
  134. Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317PubMedCrossRefGoogle Scholar
  135. Powl AM, East JM, Lee AG (2005a) Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873–5883PubMedCrossRefGoogle Scholar
  136. Powl AM, Wright JN, East JM, Lee AG (2005b) Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: studies with the mechanosensitive channel MscL. Biochemistry 44:5713–5721PubMedCrossRefGoogle Scholar
  137. Powl AM, East JM, Lee AG (2007) Different effects of lipid chain length on the two sides of a membrane and the lipid annulus of MscL. Biophys J 93:113–122PubMedPubMedCentralCrossRefGoogle Scholar
  138. Powl AM, East JM, Lee AG (2008) Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry 47:4317–4328PubMedPubMedCentralCrossRefGoogle Scholar
  139. Prole DL, Taylor CW (2013) Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 8:e66068PubMedPubMedCentralCrossRefGoogle Scholar
  140. Qi Z, Kishigami A, Nakagawa Y et al (2004) A mechanosensitive anion channel in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 45:1704–1708PubMedCrossRefGoogle Scholar
  141. Rasmussen T (2016) How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44:1019–1025PubMedCrossRefGoogle Scholar
  142. Rasmussen A, Rasmussen T, Edwards MD et al (2007) The role of tryptophan residues in the function and stability of the mechanosensitive channel MscS from Escherichia coli. Biochemistry 46:10899–10908PubMedCrossRefGoogle Scholar
  143. Rasmussen T, Edwards MD, Black SS et al (2010) Tryptophan in the pore of the mechanosensitive channel MscS: assessment of pore conformations by fluorescence spectroscopy. J Biol Chem 285:5377–5384PubMedCrossRefGoogle Scholar
  144. Rasmussen T, Rasmussen A, Singh S et al (2015) Properties of the Mechanosensitive Channel MscS pore revealed by tryptophan scanning mutagenesis. Biochemistry 54:4519–4530PubMedPubMedCentralCrossRefGoogle Scholar
  145. Reading E, Walton TA, Liko I et al (2015) The effect of detergent, temperature, and lipid on the oligomeric state of MscL constructs: insights from mass spectrometry. Chem Biol 22:593–603PubMedCrossRefGoogle Scholar
  146. Reuter M, Hayward NJ, Black SS et al (2014) Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper? J R Soc Interface 11:20130850PubMedPubMedCentralCrossRefGoogle Scholar
  147. Rowe I, Elahi M, Huq A, Sukharev S (2013) The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae. J Gen Physiol 142:75–85PubMedPubMedCentralCrossRefGoogle Scholar
  148. Schumann U, Edwards MD, Rasmussen T et al (2010) YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. Proc Natl Acad Sci U S A 107:12664–12669PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shaikh S, Cox CD, Nomura T, Martinac B (2014) Energetics of gating MscS by membrane tension in azolectin liposomes and giant spheroplasts. Channels 8:321–326PubMedPubMedCentralCrossRefGoogle Scholar
  150. Shapovalov G, Lester HA (2004) Gating transitions in bacterial ion channels measured at 3 microns resolution. J Gen Physiol 124:151–161PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shapovalov G, Bass R, Rees DC, Lester HA (2003) Open-state disulfide crosslinking between Mycobacterium tuberculosis mechanosensitive channel subunits. Biophys J 84:2357–2365PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sotomayor M, Schulten K (2004) Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys J 87:3050–3065PubMedPubMedCentralCrossRefGoogle Scholar
  154. Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. In: Benos DG, Simon SA (eds) Current topics in membranes, mechanosensitive ion channels, part A, vol 58. Elsevier, Amsterdam, pp 1–24CrossRefGoogle Scholar
  155. Stokes NR, Murray HD, Subramaniam C et al (2003) A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci U S A 100:15959–15964PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290–298PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sukharev SI, Blount P, Martinac B et al (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268PubMedCrossRefGoogle Scholar
  159. Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633–657PubMedCrossRefGoogle Scholar
  160. Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113:525–540PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sukharev S, Betanzos M, Chiang CS, Guy HR (2001a) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724PubMedCrossRefGoogle Scholar
  162. Sukharev S, Durell SR, Guy HR (2001b) Structural models of the MscL gating mechanism. Biophys J 81:917–936PubMedPubMedCentralCrossRefGoogle Scholar
  163. Syeda R, Florendo MN, Cox CD et al (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–1746PubMedPubMedCentralCrossRefGoogle Scholar
  164. Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflügers. Arch Eur J Physiol 467:27–37CrossRefGoogle Scholar
  165. Tsai I-J, Liu Z-W, Rayment J et al (2005) The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. Eur Biophys J 34:403–412PubMedCrossRefGoogle Scholar
  166. van den Berg J, Galbiati H, Rasmussen A et al (2016) On the mobility, membrane location and functionality of mechanosensitive channels in Escherichia coli. Sci Rep 6:32709PubMedPubMedCentralCrossRefGoogle Scholar
  167. van den Bogaart G, Krasnikov V, Poolman B (2007) Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys J 92:1233–1240PubMedCrossRefGoogle Scholar
  168. Vásquez V, Sotomayor M, Cordero-Morales J et al (2008a) A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–1214PubMedPubMedCentralCrossRefGoogle Scholar
  169. Vásquez V, Sotomayor M, Cortes DM et al (2008b) Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J Mol Biol 378:55–70PubMedCrossRefGoogle Scholar
  170. Velásquez J, Schuurman-Wolters G, Birkner JP et al (2014) Bacillus Subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 92:813–823PubMedCrossRefGoogle Scholar
  171. Wahome PG, Setlow P (2008) Growth, osmotic downshock resistance and differentiation of Bacillus Subtilis strains lacking mechanosensitive channels. Arch Microbiol 189:49–58PubMedCrossRefGoogle Scholar
  172. Wang W, Black SS, Edwards MD et al (2008) The structure of an open form of an E. coli mechanosensitive channel at 3.45 a resolution. Science 321:1179–1183PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wang Y, Liu Y, Deberg HA et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. Elife 3:e01834PubMedPubMedCentralGoogle Scholar
  174. Ward R, Pliotas C, Branigan E et al (2014) Probing the structure of the mechanosensitive channel of small conductance in lipid bilayers with pulsed electron-electron double resonance. Biophys J 106:834–842PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wiener M, White S (1991) Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analog of dioleoylphosphatidylcholine. Biochemistry 30:6997–7008PubMedCrossRefGoogle Scholar
  176. Wilson MME, Maksaev G, Haswell EES (2013) MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52:5708–5722PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yamashita C, Hashimoto K-I, Kumagai K et al (2013) L-Glutamate Secretion by the N-Terminal Domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem 77:1008–1013PubMedCrossRefGoogle Scholar
  178. Yang L-M, Zhong D, Blount P (2013) Chimeras reveal a single lipid-interface residue that controls MscL channel kinetics as well as mechanosensitivity. Cell Rep 3:520–527PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yilmaz D, Dimitrova AI, Walko M, Kocer A (2015) Study of light-induced MscL gating by EPR spectroscopy. Eur Biophys J 44:557–565PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yoshimura K, Sokabe M (2010) Mechanosensitivity of ion channels based on protein-lipid interactions. J R Soc Interface 7(Suppl 3):S307–S320PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yoshimura K, Batiza A, Schroeder M et al (1999) Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J 77:1960–1972PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86:2113–2120PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zhang X, Wang J, Feng Y et al (2012) Structure and molecular mechanism of an anion-selective mechanosensitive channel of small conductance. Proc Natl Acad Sci U S A 109:18180–18185PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhang XC, Liu Z, Li J (2016) From membrane tension to channel gating: a principal energy transfer mechanism for mechanosensitive channels. Protein Sci 25:1954–1964PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhong D, Blount P (2013) Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL. Biochemistry 52:5415–5420PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institut für Biochemie, Rudolf-Virchow-ZentrumUniversität WürzburgWürzburgGermany

Personalised recommendations