Coronal Heating: Issues Revealed from Hinode Observations

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

The corona, which is observed around the Sun during total solar eclipses, has a temperature of a few million degrees. The temperature of the Sun monotonically decreases from the core to the surface that we call the photosphere, and then, the temperature rapidly increases outward by two orders of magnitude from the photosphere to the corona, which starts at a distance of a few thousand kilometers above the photosphere. In this article, I introduce the understanding that has recently been improved by observations from high-performance telescopes onboard Hinode regarding the site where coronal heating occurs.

Keywords

Sun: corona Coronal heating Sun: magnetic field 

References

  1. Antolin, P., Shibata, K.: The role of torsional Alfvén waves in coronal heating. ApJ 712, 494–510 (2010)ADSCrossRefGoogle Scholar
  2. Antolin, P., et al.: Predicting observational signatures of coronal heating by Alfvén waves and nanoflares. ApJ 688, 669–682 (2008)ADSCrossRefGoogle Scholar
  3. Asgari-Targhi, M., van Ballegooijen, A.A., Imada, S.: Comparison of extreme ultraviolet imaging spectrometer observations of solar coronal loops with Alfvén wave turbulence models. ApJ 786, 28 (13pp) (2014)Google Scholar
  4. Brooks, D.H., et al.: Hinode/Extreme-ultraviolet imaging spectrometer observations of the temperature structure of the quiet corona. ApJ 705, 1522–1532 (2009)ADSCrossRefGoogle Scholar
  5. Brooks, D.H., et al.: High spatial resolution observations of loops in the solar corona. ApJ 772, L19 (5pp) (2013)Google Scholar
  6. Cirtain, J.W., et al.: Energy release in the solar corona from spatially resolved magnetic braids. Nature 493, 501–503 (2013)ADSCrossRefGoogle Scholar
  7. Dahlburg, R.B., et al.: Observational signatures of coronal loop heating and cooling driven by footpoint shuffling. ApJ 817, 47 (15pp) (2016)Google Scholar
  8. De Pontieu, B., et al.: Observing the roots of solar coronal heating – in the chromosphere. ApJ 701, L1–L6 (2009)ADSCrossRefGoogle Scholar
  9. Fujimura, D., Tsuneta, S.: Properties of magnetohydrodynamic waves in the solar photosphere obtained with Hinode. ApJ 702, 1443–1457 (2009)ADSCrossRefGoogle Scholar
  10. Hahn, M., Savin, D.W.: Observational quantification of the energy dissipated by Alfvén waves in a polar coronal hole: evidence that waves drive the fast solar wind. ApJ 776, 78 (10pp) (2013)Google Scholar
  11. Hara, H.: Coronal plasma motions in active region loops observed with Hinode EIS. ASPC 415, 252–255 (2009)ADSGoogle Scholar
  12. Hara, H., et al.: Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. ApJ 678, L67–L71 (2008)ADSCrossRefGoogle Scholar
  13. Ishikawa, R., et al.: Transient horizontal magnetic fields in solar plage region. A&A 481, L25–L28 (2008)ADSCrossRefGoogle Scholar
  14. Ishikawa, R., Tsuneta, S.: Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun. A&A 495, 607–612 (2009)ADSCrossRefGoogle Scholar
  15. Kano, R., Shimizu, T., Tarbell, T.D.: Hinode observation of photospheric magnetic activities triggering X-ray microflares around a well-developed sunspot. ApJ 720, 1136–1145 (2010)ADSCrossRefGoogle Scholar
  16. Kano, R., Ueda, K., Tsuneta, S.: Photospheric properties of warm EUV loops and hot X-ray loops. ApJ 782, L32 (6pp) (2014)Google Scholar
  17. Kitagawa, N., et al.: Mode identification of MHD waves in an active region observed with Hinode/EIS. ApJ 721, 744–749 (2010)ADSCrossRefGoogle Scholar
  18. Kosugi, T., et al.: The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3–17 (2007)ADSCrossRefGoogle Scholar
  19. Lin, R.P., et al.: Solar hard X-ray microflares. ApJ 283, 421–425 (1984)ADSCrossRefGoogle Scholar
  20. Lites, B.W., et al.: Hinode observations of horizontal quiet Sun magnetic flux and the “Hidden Turbulent Magnetic Flux”. PASJ 59, S571–S576 (2007)ADSCrossRefGoogle Scholar
  21. Lites, B.W., et al.: The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. ApJ 672, 1237–1253 (2008)ADSCrossRefGoogle Scholar
  22. Matsumoto, T., Shibata, K.: Nonlinear propagation of Alfvén waves driven by observed photospheric motions: application to the coronal heating and spicule formation. ApJ 710, 1857–1867 (2010)ADSCrossRefGoogle Scholar
  23. Nagata, S., et al.: Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. ApJ 677, L145–L147 (2008)ADSCrossRefGoogle Scholar
  24. Nishizuka, N., Hara, H.: Spectroscopic observations of continuous outflows and propagating waves from NOAA 10942 with extreme ultraviolet imaging Spectrometer/Hinode. ApJ 737, L43 (7pp) (2011)Google Scholar
  25. Okamoto, T., De Pontieu, B.: Propagating waves along spicules. ApJ 736, L24 (6pp) (2011)Google Scholar
  26. Okamoto, T., et al.: Coronal transverse magnetohydrodynamic waves in a solar prominences. Science 318, 1577–1580 (2007)ADSCrossRefGoogle Scholar
  27. Okamoto, T., et al.: Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. ApJ 809, 71 (12pp) (2015)Google Scholar
  28. Parker, E.N.: Topological dissipation and the small-scale fields in turbulent gases. ApJ 174, 499–510 (1972)ADSCrossRefGoogle Scholar
  29. Parker, E.N.: Nanoflare and the solar X-ray corona. ApJ 330, 474–479 (1988)ADSCrossRefGoogle Scholar
  30. Rosner, R., Tucker, W.H., Vaiana, G.S.: Dynamics of the quiescent solar corona. ApJ 220, 643–665 (1978)ADSCrossRefGoogle Scholar
  31. Scullion, E., et al.: Unresolved fine-scale structure in solar coronal loop-tops. ApJ 797, 36 (10pp) (2014)Google Scholar
  32. Shimizu, T.: Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. PASJ 47, 251–263 (1995)ADSGoogle Scholar
  33. Shimizu, T., et al.: Transient brightenings in active regions observed by the soft X-ray telescope on YOHKOH. ApJ 44, L147–L153 (1992)Google Scholar
  34. Stenflo, J.O.: Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. A&A 529, A42 (20pp) (2011)Google Scholar
  35. Tian, H., et al.: Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. ApJ 738, 18 (20pp) (2011)Google Scholar
  36. Wang, T.J., Ofman L., Davila J.M.: Propagating slow magnetoacoustic waves in coronal loops observed by Hinode/EIS. ApJ 696, 1448–1460 (2009)ADSCrossRefGoogle Scholar
  37. Warren, H.P., et al.: Observations of active region loops with the EUV imaging spectrometer on Hinode. ApJ 686, L131–L134 (2008)ADSCrossRefGoogle Scholar
  38. Warren, H.P., et al.: A systematic survey of high-temperature emission in solar active regions. ApJ 759, 141 (13pp) (2012)Google Scholar
  39. Winebarger, A.R., et al.: Defining the “Blind Spot” of Hinode EIS and XRT temperature measurements. ApJ 746, L17 (5pp) (2012)Google Scholar
  40. Withbroe, G.L., Noyes, R.W.: Mass and energy flow in the solar chromosphere and corona. ARA&A 15, 363–387 (1977)ADSCrossRefGoogle Scholar
  41. Yeates, A.R., et al.: The coronal energy input from magnetic braiding. A&A 564, A131 (10pp)(2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SOLAR-C Project OfficeNational Astronomical Observatory of JapanMitakaJapan

Personalised recommendations