Confirmation Delay Prediction of Transactions in the Bitcoin Network

  • Beltran FizEmail author
  • Stefan Hommes
  • Radu State
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 474)


Bitcoin is currently the most popular digital currency. It operates on a decentralised peer-to-peer network using an open source cryptographic protocol. In this work, we create a model of the selection process performed by mining pools on the set of unconfirmed transactions and then attempt to predict if an unconfirmed transaction will be part of the next block by treating it as a supervised classification problem. We identified a vector of features obtained through service monitoring of the Bitcoin transaction network and performed our experiments on a publicly available dataset of Bitcoin transaction.


Bitcoin Machine learning Mining pools 


  1. 1.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)Google Scholar
  2. 2.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). Scholar
  3. 3.
    Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv:1502.01657
  4. 4.
    Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. fast money grows on trees, not chains. Cryptology ePrint Archive, Report 2013/881 (2013)Google Scholar
  5. 5.
    Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2016). Accessed Mar 2016
  6. 6.
    Greaves, A., Au, B.: Using the bitcoin transaction graph to predict the price of bitcoinGoogle Scholar
  7. 7.
    Shah, D., Zhang, K.: Bayesian regression and bitcoin, CoRR, vol. abs/1410.1231 (2014)Google Scholar
  8. 8.
    bitcoinwiki: bitcoin transaction fees (2016). Accessed Mar 2016
  9. 9.
    bitcoinfees: bc transaction fees (2016). Accessed Mar 2016
  10. 10.
    bitcoinwiki: bitcoin protocol documentation (2016). Accessed Mar 2016
  11. 11. api (2016). Accessed Mar 2016
  12. 12.
    bitcoinstats: bitcoinstats-propagation (2016). Accessed Mar 2016
  13. 13.
    Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SnTUniversity of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations