Advertisement

Construction of High Resolution Thermocline Grid Data Sets

  • Chengquan Hu
  • Tong Zhang
  • Jin Wang
  • Yu Gou
  • Kai Wang
  • Hongtao Bai
  • Yu Jiang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 474)

Abstract

Thermocline has always been the emphasis of marine research. In this paper, we propose a method to construct high resolution marine grid data sets on the basis of MLP. Data used in the article is from World Ocean Atlas 2013. The experiments show that high resolution data can calculate the depth, thickness and strength of thermocline precisely. The method is vital to thermocline gridding.

Keywords

WOA13 MLP Thermocline High resolution 

References

  1. 1.
    Kong, Q., Ma, J., Xia, D.: Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy. Renew. Energy 35(4), 771–779 (2010)CrossRefGoogle Scholar
  2. 2.
    Boyer, T., Mishonov, A.: World Ocean Atlas 2013 Product Documentation. Ocean Climate Laboratory. NODC/NESDIS/NOAA. Silver Spring, MD 20910-3282 (2013)Google Scholar
  3. 3.
    Mohanraj, M., Jayaraj, S., Muraleedharan, C.: Applications of artificial neural networks for thermal analysis of heat exchangers–a review. Int. J. Therm. Sci. 90, 150–172 (2015)CrossRefGoogle Scholar
  4. 4.
    Sun, C., Rienecker, M.M., Rosati, A., et al.: Comparison and sensitivity of ODASI ocean analyses in the tropical Pacific. Mon. Weather Rev. 135(6), 2242–2264 (2007)CrossRefGoogle Scholar
  5. 5.
    Knutti, R., Stocker, T.F., Joos, F., Plattner, G.K.: Probabilistic climate change projections using neural networks. Clim. Dyn. 21, 257–272 (2003)CrossRefGoogle Scholar
  6. 6.
    Bhaskaran, P.K., Kumar, R.R., Barman, R., et al.: A new approach for deriving temperature and salinity fields in the Indian Ocean using artificial neural networks. J. Mar. Sci. Technol. 15(2), 160–175 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chengquan Hu
    • 1
  • Tong Zhang
    • 1
  • Jin Wang
    • 2
  • Yu Gou
    • 1
  • Kai Wang
    • 1
  • Hongtao Bai
    • 1
  • Yu Jiang
    • 1
  1. 1.College of Computer Science and TechnologyJilin UniversityChangchunChina
  2. 2.Information Engineering CollegeYangzhou UniversityYangzhouChina

Personalised recommendations