Advertisement

Vision-Based Humanoid Robot Control Using FIR Filter

  • Kwan Soo Kim
  • Hyun Ho Kang
  • Sung Hyun You
  • Choon Ki Ahn
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 474)

Abstract

In this paper, we propose a novel vision-based humanoid control method and visual tracking based on constant velocity (CV) model using the finite impulse response (FIR) filter. The proposed method has robust performance even if a sampling time or noise information is inaccurate. Furthermore, even when the movement of the detected ball or the ambient illuminance changes suddenly, the proposed method shows robust performance. The robust performance of the proposed method is verified through experimental results.

Keywords

Humanoid Vision-based control Visual tracking Kalman filter FIR filter 

Notes

Acknowledgments

This work was supported in part by “Human Resources program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201820) and in part by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT&Future Planning (NRF - 2017R1A1A1A05001325).

References

  1. 1.
    Kang, T.K., Mo, Y.K., Pae, D.S., Ahn, C.K., Lim, M.T.: Robust visual tracking framework in the presence of blurring by arbitrating appearance and feature-based detection. Measurement 95, 50–69 (2017)CrossRefGoogle Scholar
  2. 2.
    Weng, S.K., Kuo, C.M., Tu, S.K.: Video object tracking using adaptive kalman filter. J. Vis. Commun. Image Represent. 17(6), 1190–1208 (2006)CrossRefGoogle Scholar
  3. 3.
    Pak, J.M., Ahn, C.K., Mo, Y.K., Lim, M.T., Song, M.K.: Maximum likelihood FIR filter for visual object tracking. Neurocomputing 216, 543–553 (2016)CrossRefGoogle Scholar
  4. 4.
    Choi, I.H., Pak, J.M., Ahn, C.K., Lee, S.H., Lim, M.T., Song, M.K.: Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking. Measurement 75, 338–353 (2015)CrossRefGoogle Scholar
  5. 5.
    Choi, I.H., Pak, J.M., Ahn, C.K., Mo, Y.K., Lim, M.T., Song, M.K.: New preceding vehicle tracking algorithm based on optimal unbiased finite memory filter. Measurement 73, 262–274 (2015)CrossRefGoogle Scholar
  6. 6.
    Pak, J.M., Ahn, C.K., Shmaliy, Y.S., Lim, M.T.: Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering. IEEE Trans. Ind. Inform. 11(5), 1089–1098 (2015)CrossRefGoogle Scholar
  7. 7.
    Ahn, C.K., Shi, P., Basin, M.V.: Deadbeat dissipative FIR filtering. IEEE Trans. Circuits Syst. I 63(8), 1210–1221 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kwan Soo Kim
    • 1
  • Hyun Ho Kang
    • 1
  • Sung Hyun You
    • 1
  • Choon Ki Ahn
    • 1
  1. 1.School of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations