Advertisement

Application of Metallic Nanomaterials in Nanomedicine

  • Mahi R. Singh
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1052)

Abstract

In this chapter, we explain why metallic nanomaterials are used in nanomedicine. We have shown that the electron density in metallic nanomaterials oscillates and creates electron density waves. When laser light falls on metallic nanoparticles, light interacts with electron density waves. According to Einstein, light, which is electromagnetic waves, consists of particles called photons. Similarly, electron density waves are also made of particles called surface plasmons. Therefore, photons from laser light and surface plasmons from metallic nanostructures interact with each other and create new particles called surface plasmon polaritons. These new particles produce an intense light near the surface of metallic nanomaterials. We showed that this intense light is important in the application of metallic nanomaterials in nanomedicine. Further, we have applied metallic nanoparticles, single metallic nanoshells and double metallic nanoshells for treatment of cancer and detection of smaller tumors.

Keywords

Metallic nanomaterials Nanomedicine 

Notes

Acknowledgements

The author (MRS) is thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for their research grant. The author also thanks full my graduate students Mr. Kevin Black for editing English of the paper and Mr. Jiaohan Guo for converting the figures into the JPG format.

References

  1. 1.
    Conde J, Doria G, Baptista P (2012) J Drug DelivGoogle Scholar
  2. 2.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Nano Lett 7, 1929Google Scholar
  3. 3.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243CrossRefGoogle Scholar
  4. 4.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5:709CrossRefPubMedGoogle Scholar
  5. 5.
    Loo CH, Lin A, Hirsch L, Lee M, Barton JK, Halas NJ, West JL (2004) Technol Cancer Res Treat 3:33CrossRefPubMedGoogle Scholar
  6. 6.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100:13549CrossRefPubMedGoogle Scholar
  7. 7.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Cancer Lett 209:171CrossRefPubMedGoogle Scholar
  8. 8.
    Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Langmuir 21:1610CrossRefPubMedGoogle Scholar
  9. 9.
    Kim J-H, Bryan W, Lee TR (2008) Langmuir 24:1147CrossRefGoogle Scholar
  10. 10.
    Nikolai G, Khlebtsov AD (2010) J Quant Spectrosc Radiat Trans 111, 1. (J Franck, Chem Rev 115, 10407, 2015)Google Scholar
  11. 11.
    Fofang NT, Park T, Neumann O, Mirin NA, Nordlander P, Halas NJ (2008) Nano Lett 8:3481CrossRefPubMedGoogle Scholar
  12. 12.
    Wersall M, Cuadra J, Antosiewicz TJ, Balci S, Shegai T (2017) Nano Lett 17:551CrossRefPubMedGoogle Scholar
  13. 13.
    Erickson TA, Tunnell JW (2010) Online library.wiley.com. Wiley–VCH VerlagGoogle Scholar
  14. 14.
    Singh MR et al (2015) J Appl Phys 117:103102CrossRefGoogle Scholar
  15. 15.
    Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) ACS Nano 3:744CrossRefPubMedGoogle Scholar
  16. 16.
    Bardhan R, Grady NK, Halas NJ (2008) Small 4:1716CrossRefPubMedGoogle Scholar
  17. 17.
    Singh MR et al (2017) J Appl Phys 121:094303CrossRefGoogle Scholar
  18. 18.
    Wallace PR (1947) Phys Rev 71:622CrossRefGoogle Scholar
  19. 19.
    Singh M, Wallace PR (1987) J Phys C 20:2169CrossRefGoogle Scholar
  20. 20.
    Acun A, et al (2015) Germanene. J Phys Condens Matter 27, 443002Google Scholar
  21. 21.
    Vogt P et al (2012) Phys Rev Lett 108:155501CrossRefPubMedGoogle Scholar
  22. 22.
    Cao A et al (2010) Adv Mater 22:103CrossRefPubMedGoogle Scholar
  23. 23.
    Singh M et al (2017) Plasmonics 12:1021CrossRefGoogle Scholar
  24. 24.
    Marques R, Martin F, Sorolla M (2006) Metamaterials with negative parameters. Wiley, New JerseyGoogle Scholar
  25. 25.
    Meinzer N et al (2014) Nat Photonics 8:889CrossRefGoogle Scholar
  26. 26.
    Singh M et al (2015) J Appl Phys 117:184302CrossRefGoogle Scholar
  27. 27.
    Temnov VV (2012) Nat Photonics 6:728CrossRefGoogle Scholar
  28. 28.
    Yablonovitch E (1987) Phys Rev Lett 58:2059CrossRefPubMedGoogle Scholar
  29. 29.
    Singh M et al (2015) J Appl Phys 117:184302CrossRefGoogle Scholar
  30. 30.
    Cox JD, Singh MR et al (2011) Nano Lett 11:5284CrossRefPubMedGoogle Scholar
  31. 31.
    Artuso RD, Bryant GW (2010) Phys Rev B 82:195419CrossRefGoogle Scholar
  32. 32.
    Sadeghi SM, Deng L, Li X, Huang WP (2009) Nanotechnology 20:365401CrossRefPubMedGoogle Scholar
  33. 33.
    Cox JD, Singh MR, Gumbs G, Anton MA, Carreno F (2012) Phys Rev B 86:125452CrossRefGoogle Scholar
  34. 34.
    Singh M et al (2017) J Appl Phys 121:094303CrossRefGoogle Scholar
  35. 35.
    Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SPA (1994) Proc Natl Acad Sci USA 91:5022CrossRefPubMedGoogle Scholar
  36. 36.
    Weiss S (1999) Science 283:1676CrossRefPubMedGoogle Scholar
  37. 37.
    Weinberger AW, Kirchhof B, Mazinani BE, Schrage NF (2001) Graefe’s Arch Clin Exp Ophthalmol 239:388CrossRefPubMedGoogle Scholar
  38. 38.
    Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, Hirschi K, Mawad ME, Barry MA, Sevick-Muraca EM (2007) J Biomed Opt 12:024017CrossRefPubMedGoogle Scholar
  39. 39.
    Houston JP, Ke S, Wang W, Li C, Sevick-Muraca EM (2005) J Biomed Opt 10:0540101CrossRefGoogle Scholar
  40. 40.
    Singh MR, Chandra Sekhar M, Balakrishnan S, Masood S (2017) J Appl Phys 122:034306CrossRefGoogle Scholar
  41. 41.
    Singh MR, Guo J, Jorge Cid JM, Martínez JEH (2017) J Appl Phys 121:094303CrossRefGoogle Scholar
  42. 42.
    Singh MR (2014) Electronic, photonic, polaritonic and plasmonic materials. Wiley Custom, TorontoGoogle Scholar
  43. 43.
    Singh MR (2014) Excitonic and photonic processes in materials. Springer, New York, p 30. (J Singh, T Williams (eds))Google Scholar
  44. 44.
    Novotny L, Hecht B (2006) Principle of nano-optics. Cambridge University PressGoogle Scholar
  45. 45.
    Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, mathematica modeling, and applications. Cambridge University PressGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of Western OntarioLondonCanada

Personalised recommendations