Advertisement

Epigenetic Patterns/Therapies Associated with Genetic Disorders

  • Elizabeth Mazzio
  • Karam F. A. Soliman
Chapter

Abstract

Within the past three centuries, all-cause disease burden in developed countries has shifted from infectious to non-communicable (NCD)/genetic based diseases including cardiovascular conditions, cancer, neuropsychiatric conditions, and diabetes. Factors accounting for this drift include discoveries in vaccination (e.g., tetanus, cholera, typhoid, plague, anthrax, and tuberculosis), antibiotics, advances in medical diagnostics, lasers, surgical techniques, and routine medicines to treat almost every type of systemic imbalance. Moreover, advances in public health, sanitation, food safety, and geriatric sciences are creating extended life expectancy, where age-related illnesses (osteoarthritis, back pain, neurodegenerative conditions) in addition to NCDs are plaguing an ever-growing elderly population. The age-related risk for these diseases is now worsened by aggregation of global industrial pollutants, where the World Health Organization (WHO) now uses the term “environmental burden of disease” to describe adverse effects of a man-made climate, ecosystem degradation, cumulative rise in pollutants, noise, and electromagnetic fields, etc. While epigenetic environmental triggers can alter disease risk, the epigenome contains a plethora of drug targets which can alter the expression of pathological gene traits.

References

  1. 1.
    Pal LR, Yu CH, Mount SM, Moult J (2015) Insights from GWAS: emerging landscape of mechanisms underlying complex trait disease. BMC Genomics 16(Suppl 8):S4PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Huertas-Vazquez A, Nelson CP, Sinsheimer JS, Reinier K, Uy-Evanado A, Teodorescu C, Ayala J, Hall AS, Gunson K, Jui J et al (2015) Cumulative effects of common genetic variants on risk of sudden cardiac death. Int J Cardiol Heart Vasc 7:88–91PubMedPubMedCentralGoogle Scholar
  3. 3.
    Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, Wellcome Trust Case Control Consortium 2 (WTCCC2), Surrogate Markers for Micro- and Macro-Vascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) Study Group, Morris AD et al (2015) A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain 19:392–399PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, Ripke S, Gusareva ES, Annese V, Hauser SL et al (2015) High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 47:172–179PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wang Y, Li D, Wei P (2015) Powerful Tukey’s One Degree-of-Freedom Test for detecting gene-gene and gene-environment interactions. Cancer Inform 14:209–218PubMedPubMedCentralGoogle Scholar
  6. 6.
    Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119–130PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shinchi Y, Hieda M, Nishioka Y, Matsumoto A, Yokoyama Y, Kimura H, Matsuura S, Matsuura N (2015) SUV420H2 suppresses breast cancer cell invasion through down regulation of the SH2 domain-containing focal adhesion protein tensin-3. Exp Cell Res 334:90–99PubMedCrossRefGoogle Scholar
  8. 8.
    Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 9:e100429PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhuo C, Li Q, Wu Y, Li Y, Nie J, Li D, Peng J, Lian P, Li B, Cai G et al (2015) LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer. Oncotarget 6:23820–23836PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tserga A, Binder AM, Michels KB (2017) Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB J 31:5149–5158PubMedCrossRefGoogle Scholar
  11. 11.
    Wu MM, Yang F (2017) Research advances in the association between maternal intake of methyl donor nutrients during pregnancy and DNA methylation in offspring. Zhongguo Dang Dai Er Ke Za Zhi 19:601–606PubMedGoogle Scholar
  12. 12.
    Stathopoulou A, Lucchiari G, Ooi SK (2014) DNA methylation is dispensable for suppression of the agouti viable yellow controlling element in murine embryonic stem cells. PLoS One 9:e107355PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Weinhouse C, Anderson OS, Jones TR, Kim J, Liberman SA, Nahar MS, Rozek LS, Jirtle RL, Dolinoy DC (2011) An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics 6:1105–1113PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Singh S, Li SS (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13:10143–10153PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Menzies KJ, Zhang H, Katsyuba E, Auwerx J (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12:43–60PubMedCrossRefGoogle Scholar
  16. 16.
    Jiang X, West AA, Caudill MA (2014) Maternal choline supplementation: a nutritional approach for improving offspring health? Trends Endocrinol Metab 25:263–273PubMedCrossRefGoogle Scholar
  17. 17.
    Lo CL, Zhou FC (2014) Environmental alterations of epigenetics prior to the birth. Int Rev Neurobiol 115:1–49PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Torres A, Newton SA, Crompton B, Borzutzky A, Neufeld EJ, Notarangelo L, Berry GT (2015) CSF 5-methyltetrahydrofolate serial monitoring to guide treatment of congenital folate malabsorption due to proton-coupled folate transporter (PCFT) deficiency. JIMD Rep 24:91–96PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Huemer M, Mulder-Bleile R, Burda P, Froese DS, Suormala T, Zeev BB, Chinnery PF, Dionisi-Vici C, Dobbelaere D, Gokcay G et al (2016) Clinical pattern, mutations and in vitro residual activity in 33 patients with severe 5, 10 methylenetetrahydrofolate reductase (MTHFR) deficiency. J Inherit Metab Dis 39:115–124PubMedCrossRefGoogle Scholar
  20. 20.
    Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R (2015) MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience 300:1–9PubMedCrossRefGoogle Scholar
  21. 21.
    Burda P, Kuster A, Hjalmarson O, Suormala T, Burer C, Lutz S, Roussey G, Christa L, Asin-Cayuela J, Kollberg G et al (2015) Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation, and response to folic and folinic acid treatment. J Inherit Metab Dis 38:863–872PubMedCrossRefGoogle Scholar
  22. 22.
    Tomizawa H, Matsuzawa D, Ishii D, Matsuda S, Kawai K, Mashimo Y, Sutoh C, Shimizu E (2015) Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav 14:301–309PubMedCrossRefGoogle Scholar
  23. 23.
    El Hajj Chehadeh S, Dreumont N, Willekens J, Canabady-Rochelle L, Jeannesson E, Alberto JM, Daval JL, Gueant JL, Leininger-Muller B (2014) Early methyl donor deficiency alters cAMP signaling pathway and neurosteroidogenesis in the cerebellum of female rat pups. Am J Physiol Endocrinol Metab 307:E1009–E1019PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sequeira JM, Ramaekers VT, Quadros EV (2013) The diagnostic utility of folate receptor autoantibodies in blood. Clin Chem Lab Med 51:545–554PubMedCrossRefGoogle Scholar
  25. 25.
    Burda P, Schafer A, Suormala T, Rummel T, Burer C, Heuberger D, Frapolli M, Giunta C, Sokolova J, Vlaskova H et al (2015) Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients. Hum Mutat 36:611–621PubMedCrossRefGoogle Scholar
  26. 26.
    Watkins D, Rosenblatt DS (2012) Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis 35:665–670PubMedCrossRefGoogle Scholar
  27. 27.
    Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, Smart-Halajko M, Bawazeer N, Al-Daghri NM, McTernan PG et al (2015) Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics 7:14PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ekim M, Ekim H, Yilmaz YK, Kulah B, Polat MF, Gocmen AY (2015) Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins. Pak J Med Sci 31:398–402PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Awan Z, Aljenedil S, Rosenblatt DS, Cusson J, Gilfix BM, Genest J (2014) Severe hyperhomocysteinemia due to cystathionine beta-synthase deficiency, and Factor V Leiden mutation in a patient with recurrent venous thrombosis. Thromb J 12:30PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Thomas D, Chandra J, Sharma S, Jain A, Pemde HK (2015) Determinants of nutritional anemia in adolescents. Indian Pediatr 52:867–869PubMedCrossRefGoogle Scholar
  31. 31.
    Noori N, Miri-Moghaddam E, Dejkam A, Garmie Y, Bazi A (2017) Are polymorphisms in MTRR A66G and MTHFR C677T genes associated with congenital heart diseases in Iranian population? Caspian J Intern Med 8:83–90PubMedPubMedCentralGoogle Scholar
  32. 32.
    Abdolmaleky HM, Zhou JR, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7:427–449PubMedCrossRefGoogle Scholar
  33. 33.
    Harris RA, Nagy-Szakal D, Mir SA, Frank E, Szigeti R, Kaplan JL, Bronsky J, Opekun A, Ferry GD, Winter H, Kellermayer R (2014) DNA methylation-associated colonic mucosal immune and defense responses in treatment-naive pediatric ulcerative colitis. Epigenetics 9:1131–1137PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kraiczy J, Nayak K, Ross A, Raine T, Mak TN, Gasparetto M, Cario E, Rakyan V, Heuschkel R, Zilbauer M (2016) Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease. Mucosal Immunol 9:647–658PubMedCrossRefGoogle Scholar
  35. 35.
    Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Ryden M, Andersson DP, Henriksson J, Perfilyev A, Ling C et al (2015) The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes 39:910–919CrossRefGoogle Scholar
  36. 36.
    Houde AA, Legare C, Biron S, Lescelleur O, Biertho L, Marceau S, Tchernof A, Vohl MC, Hivert MF, Bouchard L (2015) Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet 16:29PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Canivell S, Ruano EG, Siso-Almirall A, Kostov B, Gonzalez-de Paz L, Fernandez-Rebollo E, Hanzu FA, Parrizas M, Novials A, Gomis R (2014) Differential methylation of TCF7L2 promoter in peripheral blood DNA in newly diagnosed, drug-naive patients with type 2 diabetes. PLoS One 9:e99310PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhu X, Shan L, Wang F, Wang J, Wang F, Shen G, Liu X, Wang B, Yuan Y, Ying J, Yang H (2015) Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res Treat 150:479–486PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao X, Cui Y, Li Y, Liang S, Zhang Y, Xie L, Xia Z, Du J, Wei L, Li Y (2015) Significance of TSLC1 gene methylation and TSLC1 protein expression in the progression of cervical lesions. Zhonghua Zhong Liu Za Zhi 37:356–360PubMedGoogle Scholar
  40. 40.
    Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, Consortium F, Drablos F (2015) EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford) 2015:bav067CrossRefGoogle Scholar
  41. 41.
    Kosho T, Miyake N, Carey JC (2014) Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am J Med Genet C Semin Med Genet 166C:241–251PubMedCrossRefGoogle Scholar
  42. 42.
    Santen GW, Clayton-Smith J, ARID1B-CSS consortium (2014) The ARID1B phenotype: what we have learned so far. Am J Med Genet C Semin Med Genet 166C:276–289PubMedCrossRefGoogle Scholar
  43. 43.
    Salavaty A (2015) Carcinogenic effects of circadian disruption: an epigenetic viewpoint. Chin J Cancer 34:38PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Powell WT, LaSalle JM (2015) Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet 24:R1–R9PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Miyake N, Tsurusaki Y, Matsumoto N (2014) Numerous BAF complex genes are mutated in Coffin-Siris syndrome. Am J Med Genet C Semin Med Genet 166C:257–261PubMedCrossRefGoogle Scholar
  46. 46.
    Briand N, Collas P (2018) Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 9:216–226PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Singh V, Singh LC, Singh AP, Sharma J, Borthakur BB, Debnath A, Rai AK, Phukan RK, Mahanta J, Kataki AC et al (2015) Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population. Am J Cancer Res 5:979–999PubMedPubMedCentralGoogle Scholar
  48. 48.
    Haggarty P (2015) Genetic and metabolic determinants of human epigenetic variation. Curr Opin Clin Nutr Metab Care 18:334–338PubMedCrossRefGoogle Scholar
  49. 49.
    Lee JJ, Sholl LM, Lindeman NI, Granter SR, Laga AC, Shivdasani P, Chin G, Luke JJ, Ott PA, Hodi FS et al (2015) Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas. Clin Epigenetics 7:59PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lu XL, Wang L, Chang SY, Shangguan SF, Wang Z, Wu LH, Zou JZ, Xiao P, Li R, Bao YH et al (2016) Sonic Hedgehog signaling affected by promoter hypermethylation induces aberrant Gli2 expression in Spina bifida. Mol Neurobiol 53:5413–5424PubMedCrossRefGoogle Scholar
  51. 51.
    Tang KF, Li YL, Wang HY (2015) Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects. Sci Rep 5:8510PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wu H, Zhu P, Geng X, Liu Z, Cui L, Gao Z, Jiang B, Yang L (2017) Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet 295:1105–1118PubMedCrossRefGoogle Scholar
  53. 53.
    Gueant JL, Daval JL, Vert P, Nicolas JP (2012) Folates and fetal programming: role of epigenetics and epigenomics. Bull Acad Natl Med 196:1829–1842PubMedGoogle Scholar
  54. 54.
    Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G (2016) Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 27:1–8PubMedCrossRefGoogle Scholar
  55. 55.
    Godfrey KM (2002) The role of the placenta in fetal programming-a review. Placenta 23 Suppl A:S20–S27PubMedCrossRefGoogle Scholar
  56. 56.
    Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388PubMedCrossRefGoogle Scholar
  57. 57.
    Sallmen M (2001) Exposure to lead and male fertility. Int J Occup Med Environ Health 14:219–222PubMedGoogle Scholar
  58. 58.
    Radwan M, Jurewicz J, Polanska K, Sobala W, Radwan P, Bochenek M, Hanke W (2016) Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 43:50–56PubMedCrossRefGoogle Scholar
  59. 59.
    Pourie G, Martin N, Bossenmeyer-Pourie C, Akchiche N, Gueant-Rodriguez RM, Geoffroy A, Jeannesson E, Chehadeh Sel H, Mimoun K, Brachet P et al (2015) Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha. FASEB J 29:3713–3725PubMedCrossRefGoogle Scholar
  60. 60.
    Mueller JK, Heger S (2014) Endocrine disrupting chemicals affect the gonadotropin releasing hormone neuronal network. Reprod Toxicol 44:73–84PubMedCrossRefGoogle Scholar
  61. 61.
    Yang CY, Huang TS, Lin KC, Kuo P, Tsai PC, Guo YL (2011) Menstrual effects among women exposed to polychlorinated biphenyls and dibenzofurans. Environ Res 111:288–294PubMedCrossRefGoogle Scholar
  62. 62.
    Liu Y, Mei C, Liu H, Wang H, Zeng G, Lin J, Xu M (2014) Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem Biophys Res Commun 451:592–598PubMedCrossRefGoogle Scholar
  63. 63.
    Park CH, Lim KT (2010) Phytoglycoprotein (75 kDa) suppresses release of histamine and expression of IL-4 and IFN- gamma in BPA-treated RBL-2H3 cells. Immunol Investig 39:171–185CrossRefGoogle Scholar
  64. 64.
    O’Brien E, Dolinoy DC, Mancuso P (2014) Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J Immunotoxicol 11:205–212PubMedCrossRefGoogle Scholar
  65. 65.
    Luo G, Wang S, Li Z, Wei R, Zhang L, Liu H, Wang C, Niu R, Wang J (2014) Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci 140:364–373PubMedCrossRefGoogle Scholar
  66. 66.
    Park MA, Hwang KA, Choi KC (2011) Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 27:265–273PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, Stecca L, Perra G, Mancini FR, Marci R et al (2014) Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. Int J Environ Res Public Health 11:10146–10164PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vieweg M, Dvorakova-Hortova K, Dudkova B, Waliszewski P, Otte M, Oels B, Hajimohammad A, Turley H, Schorsch M, Schuppe HC et al (2015) Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin Epigenetics 7:31PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, Rinaudo PF (2014) Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155:1956–1969PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Melamed N, Choufani S, Wilkins-Haug LE, Koren G, Weksberg R (2015) Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 10:474–483PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, Sartori C, Scherrer U, Rimoldi SF (2015) Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am J Physiol Heart Circ Physiol 309:H1151–H1156PubMedCrossRefGoogle Scholar
  72. 72.
    Scherrer U, Rexhaj E, Allemann Y, Sartori C, Rimoldi SF (2015) Cardiovascular dysfunction in children conceived by assisted reproductive technologies. Eur Heart J 36:1583–1589PubMedCrossRefGoogle Scholar
  73. 73.
    Cetin I, Cozzi V, Antonazzo P (2003) Fetal development after assisted reproduction--a review. Placenta 24 Suppl B:S104–S113PubMedCrossRefGoogle Scholar
  74. 74.
    Gosden R, Trasler J, Lucifero D, Faddy M (2003) Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361:1975–1977PubMedCrossRefGoogle Scholar
  75. 75.
    Anifandis G, Messini CI, Dafopoulos K, Messinis IE (2015) Genes and conditions controlling mammalian pre- and post-implantation embryo development. Curr Genomics 16:32–46PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tobi EW, Slieker RC, Stein AD, Suchiman HE, Slagboom PE, van Zwet EW, Heijmans BT, Lumey LH (2015) Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 44:1211–1223PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Muller F et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    van Abeelen AF, Elias SG, de Jong PA, Grobbee DE, Bossuyt PM, van der Schouw YT, Roseboom TJ, Uiterwaal CS (2013) Famine in the young and risk of later hospitalization for COPD and asthma. PLoS One 8:e82636PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ginty AT, Carroll D, Roseboom TJ, Phillips AC, de Rooij SR (2013) Depression and anxiety are associated with a diagnosis of hypertension 5 years later in a cohort of late middle-aged men and women. J Hum Hypertens 27:187–190PubMedCrossRefGoogle Scholar
  80. 80.
    Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145PubMedCrossRefGoogle Scholar
  81. 81.
    de Rooij SR, Roseboom TJ (2013) The developmental origins of ageing: study protocol for the Dutch famine birth cohort study on ageing. BMJ Open 3Google Scholar
  82. 82.
    van Abeelen AF, Veenendaal MV, Painter RC, de Rooij SR, Dijkgraaf MG, Bossuyt PM, Elias SG, Grobbee DE, Uiterwaal CS, Roseboom TJ (2012) Survival effects of prenatal famine exposure. Am J Clin Nutr 95:179–183PubMedCrossRefGoogle Scholar
  83. 83.
    El Hajj N, Schneider E, Lehnen H, Haaf T (2014) Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 148:R111–R120PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(Suppl 2):22–33PubMedCrossRefGoogle Scholar
  85. 85.
    Kuriyan R, Thankachan P, Selvam S, Pauline M, Srinivasan K, Kamath-Jha S, Vinoy S, Misra S, Finnegan Y, Kurpad AV (2016) The effects of regular consumption of a multiple micronutrient fortified milk beverage on the micronutrient status of school children and on their mental and physical performance. Clin Nutr 35:1908–1908CrossRefGoogle Scholar
  86. 86.
    Christensen KE, Deng L, Bahous RH, Jerome-Majewska LA, Rozen R (2015) MTHFD1 formyltetrahydrofolate synthetase deficiency, a model for the MTHFD1 R653Q variant, leads to congenital heart defects in mice. Birth Defects Res A Clin Mol Teratol 103:1031–1038PubMedCrossRefGoogle Scholar
  87. 87.
    Huhta JC, Linask K (2015) When should we prescribe high-dose folic acid to prevent congenital heart defects? Curr Opin Cardiol 30:125–131PubMedCrossRefGoogle Scholar
  88. 88.
    Zuckerman C, Blumkin E, Melamed O, Golan HM (2015) Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure. Eur Neuropsychopharmacol 25:1787–1802PubMedCrossRefGoogle Scholar
  89. 89.
    Chen G, Broseus J, Hergalant S, Donnart A, Chevalier C, Bolanos-Jimenez F, Gueant JL, Houlgatte R (2015) Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Mol Nutr Food Res 59:293–302PubMedCrossRefGoogle Scholar
  90. 90.
    Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, Riva E, Giovannini M (2014) Epigenetic effects of human breast milk. Nutrients 6:1711–1724PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Noutsios GT, Floros J (2014) Childhood asthma: causes, risks, and protective factors; a role of innate immunity. Swiss Med Wkly 144:w14036PubMedGoogle Scholar
  92. 92.
    Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14PubMedCrossRefGoogle Scholar
  93. 93.
    Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM (2013) Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr 98:586S–593SPubMedCrossRefGoogle Scholar
  94. 94.
    Alsaweed M, Hartmann PE, Geddes DT, Kakulas F (2015) MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 12:13981–14020PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Melnik BC, John SM, Schmitz G (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 12:43PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Porta F, Mussa A, Baldassarre G, Perduca V, Farina D, Spada M, Ponzone A (2016) Genealogy of breastfeeding. Eur J Pediatr 175:105–112PubMedCrossRefGoogle Scholar
  97. 97.
    Veazey KJ, Parnell SE, Miranda RC, Golding MC (2015) Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin 8:39PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS (2014) Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERalpha alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262–268PubMedCrossRefGoogle Scholar
  99. 99.
    Walker DM, Gore AC (2011) Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 7:197–207PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Paoloni-Giacobino A (2014) Epigenetic effects of methoxychlor and vinclozolin on male gametes. Vitam Horm 94:211–227PubMedCrossRefGoogle Scholar
  101. 101.
    Mazzoccoli G, Pazienza V, Vinciguerra M (2012) Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 29:227–251PubMedCrossRefGoogle Scholar
  102. 102.
    Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hubner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W (2016) Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr 55:1863–1873PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou J, Yong WP, Yap CS, Vijayaraghavan A, Sinha RA, Singh BK, Xiu S, Manesh S, Ngo A, Lim A et al (2015) An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis 36:441–451PubMedCrossRefGoogle Scholar
  104. 104.
    Wu Y, Sarkissyan M, Vadgama JV (2015) Epigenetics in breast and prostate cancer. Methods Mol Biol 1238:425–466PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Berry JM, Cao DJ, Rothermel BA, Hill JA (2008) Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 7:53–67PubMedCrossRefGoogle Scholar
  106. 106.
    Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59PubMedCrossRefGoogle Scholar
  107. 107.
    Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280:145–153PubMedCrossRefGoogle Scholar
  108. 108.
    Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32:591–601PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    O’Sullivan JM, Doynova MD, Antony J, Pichlmuller F, Horsfield JA (2014) Insights from space: potential role of diet in the spatial organization of chromosomes. Nutrients 6:5724–5739PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172:2756–2768PubMedCrossRefGoogle Scholar
  111. 111.
    Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF (2015) Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients 7:6670–6687PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Klarich DS, Brasser SM, Hong MY (2015) Moderate alcohol consumption and colorectal cancer risk. Alcohol Clin Exp Res 39:1280–1291PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang D, Wen X, Wu W, Guo Y, Cui W (2015) Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. PLoS One 10:e0123423PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Chen X, Wang J, Bai L, Ding L, Wu T, Bai L, Xu J, Sun X (2015) Interaction between folate deficiency and aberrant expression related to fragile histidine triad gene in the progression of cervical cancerization. Zhonghua Liu Xing Bing Xue Za Zhi 36:387–392PubMedGoogle Scholar
  115. 115.
    Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, Vinciguerra M (2015) Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr 10:480PubMedCrossRefGoogle Scholar
  116. 116.
    Pirouzpanah S, Taleban FA, Mehdipour P, Atri M (2015) Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J Mol Med (Berl) 93:917–934CrossRefGoogle Scholar
  117. 117.
    Yu X, Liu R, Zhao G, Zheng M, Chen J, Wen J (2014) Folate supplementation modifies CCAAT/enhancer-binding protein alpha methylation to mediate differentiation of preadipocytes in chickens. Poult Sci 93:2596–2603PubMedCrossRefGoogle Scholar
  118. 118.
    Liu H, Li W, Zhao S, Zhang X, Zhang M, Xiao Y, Wilson JX, Huang G (2016) Folic acid attenuates the effects of amyloid beta oligomers on DNA methylation in neuronal cells. Eur J Nutr 55:1849–1862PubMedCrossRefGoogle Scholar
  119. 119.
    Li W, Jiang M, Xiao Y, Zhang X, Cui S, Huang G (2015) Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J Nutr Health Aging 19:123–129PubMedCrossRefGoogle Scholar
  120. 120.
    Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10:281–288PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Li W, Liu H, Yu M, Zhang X, Zhang M, Wilson JX, Huang G (2015) Folic acid administration inhibits amyloid beta-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem 26:883–891PubMedCrossRefGoogle Scholar
  122. 122.
    Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC, Tyagi N (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ormazabal A, Casado M, Molero-Luis M, Montoya J, Rahman S, Aylett SB, Hargreaves I, Heales S, Artuch R (2015) Can folic acid have a role in mitochondrial disorders? Drug Discov Today 20:1349–1354PubMedCrossRefGoogle Scholar
  124. 124.
    Araujo JR, Martel F, Borges N, Araujo JM, Keating E (2015) Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19PubMedCrossRefGoogle Scholar
  125. 125.
    Ramaekers VT, Thony B, Sequeira JM, Ansseau M, Philippe P, Boemer F, Bours V, Quadros EV (2014) Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol Genet Metab 113:307–314PubMedCrossRefGoogle Scholar
  126. 126.
    Malaguarnera G, Gagliano C, Salomone S, Giordano M, Bucolo C, Pappalardo A, Drago F, Caraci F, Avitabile T, Motta M (2015) Folate status in type 2 diabetic patients with and without retinopathy. Clin Ophthalmol 9:1437–1442PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    McGarel C, Pentieva K, Strain JJ, McNulty H (2015) Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc 74:46–55PubMedCrossRefGoogle Scholar
  128. 128.
    Ma F, Wu T, Zhao J, Han F, Marseglia A, Liu H, Huang G (2016) Effects of 6-month folic acid supplementation on cognitive function and blood biomarkers in mild cognitive impairment: a randomized controlled trial in China. J Gerontol A Biol Sci Med Sci 71:1376–1383PubMedCrossRefGoogle Scholar
  129. 129.
    Duong MC, Mora-Plazas M, Marin C, Villamor E (2015) Vitamin B-12 deficiency in children is associated with grade repetition and school absenteeism, independent of folate, iron, zinc, or vitamin a status biomarkers. J Nutr 145:1541–1548PubMedCrossRefGoogle Scholar
  130. 130.
    Issac TG, Soundarya S, Christopher R, Chandra SR (2015) Vitamin B12 deficiency: an important reversible co-morbidity in neuropsychiatric manifestations. Indian J Psychol Med 37:26–29PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Agrawal A, Ilango K, Singh PK, Karmakar D, Singh GP, Kumari R, Dubey GP (2015) Age dependent levels of plasma homocysteine and cognitive performance. Behav Brain Res 283:139–144PubMedCrossRefGoogle Scholar
  132. 132.
    Choi SW, Tammen SA, Liu Z, Friso S (2015) A lifelong exposure to a western-style diet, but not aging, alters global DNA methylation in mouse colon. Nutr Res Pract 9:358–363PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Saldanha SN, Kala R, Tollefsbol TO (2014) Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res 324:40–53PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2014) Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med (Maywood) 239:302–310CrossRefGoogle Scholar
  135. 135.
    Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY (2014) Mechanisms by which pleiotropic amphiphilic 3 PUFA reduce colon cancer risk. Curr Colorectal Cancer Rep 10:442–452PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Triff K, Kim E, Chapkin RS (2015) Chemoprotective epigenetic mechanisms in a colorectal cancer model: modulation by n-3 PUFA in combination with fermentable fiber. Curr Pharmacol Rep 1:11–20PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Krakowsky RH, Tollefsbol TO (2015) Impact of nutrition on non-coding RNA epigenetics in breast and gynecological cancer. Front Nutr 2:16PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Wagner AE, Terschluesen AM, Rimbach G (2013) Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. Oxidative Med Cell Longev 2013:964539CrossRefGoogle Scholar
  139. 139.
    Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15PubMedCrossRefGoogle Scholar
  140. 140.
    Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218:59–70PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Henning SM, Wang P, Carpenter CL, Heber D (2013) Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5:729–741PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Pharmacy and Pharmaceutical SciencesFlorida A&M UniversityTallahasseeUSA
  2. 2.Center of Excellence for Cancer Research, Training and Community Service, College of Pharmacy and Pharmaceutical SciencesFlorida A&M UniversityTallahasseeUSA

Personalised recommendations