Advertisement

Clinical Pharmacogenomics and Personalized Medicine: New Strategies to Maximize Drug Efficacy and Avoid Adverse Drug Reaction

  • Chonlaphat Sukasem
  • Sadeep Medhasi
Chapter

Abstract

Genetic variability among drug-metabolizing enzymes (DMEs) and transporters influences the pharmacokinetics of the drug and is associated with marked interindividual variability in therapeutic effects and toxicity. Therapeutic drug monitoring (TDM) can facilitate the individualization of dose adjustment of the drug by measuring the plasma concentrations of drug. TDM can be incorporated with the pharmacogenomics, and the metabolic status of the patient can be characterized to optimize the dosage regimen according to the patient’s needs. Several polymorphisms among cytochrome P450 (CYP) and phase II enzymes that contribute to the adverse drug reactions (ADRs) have been updated on a regular basis in PharmGKB. A number of pharmacogenomic markers are reported by the Food and Drug Administration and Clinical Pharmacogenetics Implementation Consortium (CPIC) among DMEs for commonly used drugs that are potentially associated with variability in drug response. This review focuses on the genetic polymorphisms of phases I and II DMEs and their associations with drug responses. The drugs discussed in this review requiring a pharmacogenomic test before being prescribed includes efavirenz, voriconazole, clopidogrel, warfarin, tamoxifen, irinotecan, tacrolimus, azathioprine, and risperidone. This chapter also presents the application of pharmacogenomics in the clinic and patient counseling. Finally, a section focuses on the future perspectives of pharmacogenomics and the translation of pharmacogenomic research into routine clinical care.

Notes

Acknowledgments

The authors would like to thank (1) Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; (2) Khoon Poom Foundation, The Project of Her Royal Highness Princess Ubonratana Rajakanya Siriwatana Bhanawadee, and (3) Pharmacogenomics for Autistic Children, Office of National Research Council of Thailand.

References

  1. 1.
    Daly AK (2013) Pharmacogenomics of adverse drug reactions. Genome Med 5(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhou ZW et al (2015) Clinical association between pharmacogenomics and adverse drug reactions. Drugs 75(6):589–631CrossRefPubMedGoogle Scholar
  3. 3.
    Hiemke C (2008) Clinical utility of drug measurement and pharmacokinetics: therapeutic drug monitoring in psychiatry. Eur J Clin Pharmacol 64(2):159–166CrossRefPubMedGoogle Scholar
  4. 4.
    Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63(2):437–459CrossRefPubMedGoogle Scholar
  5. 5.
    Hartshorne T (2013) TaqMan(R) drug metabolism genotyping assays for the detection of human polymorphisms involved in drug metabolism. Methods Mol Biol 1015:87–96CrossRefPubMedGoogle Scholar
  6. 6.
    Fernandez CA et al (2012) Concordance of DMET plus genotyping results with those of orthogonal genotyping methods. Clin Pharmacol Ther 92(3):360–365CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    He HR et al (2015) Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole. Eur J Clin Microbiol Infect Dis 34(4):811–819CrossRefPubMedGoogle Scholar
  8. 8.
    Olagunju A et al (2014) CYP2B6 516G>T (rs3745274) and smoking status are associated with efavirenz plasma concentration in a Serbian cohort of HIV patients. Ther Drug Monit 36(6):734–738CrossRefPubMedGoogle Scholar
  9. 9.
    Maganda BA et al (2016) CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients. Pharmacogenomics J 16(1):88–95CrossRefPubMedGoogle Scholar
  10. 10.
    Ogungbenro K et al (2015) Physiologically based pharmacokinetic model for 6-mercpatopurine: exploring the role of genetic polymorphism in TPMT enzyme activity. Br J Clin Pharmacol 80(1):86–100CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ben Salem C et al (2010) Azathioprine-induced severe cholestatic hepatitis in patient carrying TPMT*3C polymorphism. Pharm World Sci 32(6):701–703CrossRefPubMedGoogle Scholar
  12. 12.
    Xu C et al (2016) UGT1A1 gene polymorphism is associated with toxicity and clinical efficacy of irinotecan-based chemotherapy in patients with advanced colorectal cancer. Cancer Chemother Pharmacol 78(1):119–130CrossRefPubMedGoogle Scholar
  13. 13.
    Fukuda M et al (2016) Prospective study of the UGT1A1*27 gene polymorphism during irinotecan therapy in patients with lung cancer: results of lung oncology Group in Kyusyu (LOGIK1004B). Thorac Cancer 7(4):467–472CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sim SC, Kacevska M, Ingelman-Sundberg M (2013) Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 13(1):1–11CrossRefPubMedGoogle Scholar
  15. 15.
    Stingl JC, Brockmoller J, Viviani R (2013) Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 18(3):273–287CrossRefPubMedGoogle Scholar
  16. 16.
    Yiannakopoulou E (2013) Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. Pharmacogenomics J 13(2):105–109CrossRefPubMedGoogle Scholar
  17. 17.
    Sissung TM et al (2012) Transporter pharmacogenetics: transporter polymorphisms affect normal physiology, diseases, and pharmacotherapy. Discov Med 13(68):19–34PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14(1):29–44CrossRefPubMedGoogle Scholar
  19. 19.
    Zair ZM, Singer DR (2016) Efflux transporter variants as predictors of drug toxicity in lung cancer patients: systematic review and meta-analysis. Pharmacogenomics 17(9):1089–1112CrossRefPubMedGoogle Scholar
  20. 20.
    Zair ZM, Singer DR (2016) Influx transporter variants as predictors of cancer chemotherapy-induced toxicity: systematic review and meta-analysis. Pharmacogenomics 17(10):1189–1205CrossRefPubMedGoogle Scholar
  21. 21.
    Kwara A et al (2009) CYP2B6 (c.516G-->T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br J Clin Pharmacol 67(4):427–436CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cusato J et al (2016) Efavirenz pharmacogenetics in a cohort of Italian patients. Int J Antimicrob Agents 47(2):117–123CrossRefPubMedGoogle Scholar
  23. 23.
    Sukasem C et al (2012) Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br J Clin Pharmacol 74(6):1005–1012CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sukasem C et al (2013) High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections. Drug Metab Pharmacokinet 28(5):391–397CrossRefPubMedGoogle Scholar
  25. 25.
    Dolton MJ, McLachlan AJ (2014) Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents 44(3):183–193CrossRefPubMedGoogle Scholar
  26. 26.
    Owusu Obeng A et al (2014) CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy 34(7):703–718CrossRefPubMedGoogle Scholar
  27. 27.
    Swen JJ et al (2011) Pharmacogenetics: from bench to byte-an update of guidelines. Clin Pharmacol Ther 89(5):662–673CrossRefPubMedGoogle Scholar
  28. 28.
    Wang T et al (2014) Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents 44(5):436–442CrossRefPubMedGoogle Scholar
  29. 29.
    Lamoureux F et al (2016) Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int J Antimicrob Agents 47(2):124–131CrossRefPubMedGoogle Scholar
  30. 30.
    Chuwongwattana S et al (2016) A prospective observational study of CYP2C19 polymorphisms and voriconazole plasma level in adult Thai patients with invasive aspergillosis. Drug Metab Pharmacokinet 31(2):117–122CrossRefPubMedGoogle Scholar
  31. 31.
    Saab YB, Zeenny R, Ramadan WH (2015) Optimizing clopidogrel dose response: a new clinical algorithm comprising CYP2C19 pharmacogenetics and drug interactions. Ther Clin Risk Manag 11:1421–1427CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Scott SA et al (2013) Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 94(3):317–323CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li Y et al (2012) The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost 10(2):199–206CrossRefPubMedGoogle Scholar
  34. 34.
    Flockhart DA et al (2008) Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med 10(2):139–150CrossRefPubMedGoogle Scholar
  35. 35.
    Ross KA et al (2010) Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 55(9):582–589CrossRefPubMedGoogle Scholar
  36. 36.
    Herman D et al (2005) Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 5(3):193–202CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson JA et al (2011) Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 90(4):625–629CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gaikwad T et al (2013) Influence of CYP2C9 and VKORC1 gene polymorphisms on warfarin dosage, over anticoagulation and other adverse outcomes in Indian population. Eur J Pharmacol 710(1–3):80–84CrossRefPubMedGoogle Scholar
  39. 39.
    Binkhorst L et al (2015) Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev 41(3):289–299CrossRefPubMedGoogle Scholar
  40. 40.
    Dezentje VO et al (2013) CYP2D6 genotype in relation to tamoxifen efficacy in a Dutch cohort of the tamoxifen exemestane adjuvant multinational (TEAM) trial. Breast Cancer Res Treat 140(2):363–373CrossRefPubMedGoogle Scholar
  41. 41.
    Chamnanphon M et al (2013) Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen. Pharmgenomics Pers Med 6:37–48PubMedPubMedCentralGoogle Scholar
  42. 42.
    Medhasi S et al (2016) Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder. Neuropsychiatr Dis Treat 12:843–851PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nishimura M et al (2016) Influence of the cytochrome P450 2D6 *10/*10 genotype on the pharmacokinetics of paroxetine in Japanese patients with major depressive disorder: a population pharmacokinetic analysis. Pharmacogenet Genomics 26(9):403–413CrossRefPubMedGoogle Scholar
  44. 44.
    Del Re M et al (2016) Pharmacogenetics of CYP2D6 and tamoxifen therapy: light at the end of the tunnel? Pharmacol Res 107:398–406CrossRefPubMedGoogle Scholar
  45. 45.
    Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243CrossRefPubMedGoogle Scholar
  46. 46.
    Zafra-Ceres M et al (2013) Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. Int J Med Sci 10(7):932–937CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sandanaraj E et al (2008) Influence of UGT1A9 intronic I399C>T polymorphism on SN-38 glucuronidation in Asian cancer patients. Pharmacogenomics J 8(3):174–185CrossRefPubMedGoogle Scholar
  48. 48.
    Schulz C et al (2009) UGT1A1 genotyping: a predictor of irinotecan-associated side effects and drug efficacy? Anti-Cancer Drugs 20(10):867–879CrossRefPubMedGoogle Scholar
  49. 49.
    Evaluation of Genomic Applications in, P. and G. Prevention Working (2009) Recommendations from the EGAPP working group: can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? Genet Med 11(1):15–20CrossRefGoogle Scholar
  50. 50.
    Etienne-Grimaldi MC et al (2015) UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam Clin Pharmacol 29(3):219–237CrossRefPubMedGoogle Scholar
  51. 51.
    Cheng L et al (2014) UGT1A1*6 polymorphisms are correlated with irinotecan-induced toxicity: a system review and meta-analysis in Asians. Cancer Chemother Pharmacol 73(3):551–560CrossRefPubMedGoogle Scholar
  52. 52.
    Yan L et al (2016) Effects of UGT1A1*6, UGT1A1*28, and ABCB1-3435C>T polymorphisms on irinotecan induced toxicity in Chinese cancer patients. Int J Clin Pharmacol Ther 54(3):193–199CrossRefPubMedGoogle Scholar
  53. 53.
    Atasilp C et al (2016) Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients. Drug Metab Pharmacokinet 31(1):90–94CrossRefPubMedGoogle Scholar
  54. 54.
    Hirasawa A et al (2013) Polymorphisms in the UGT1A1 gene predict adverse effects of irinotecan in the treatment of gynecologic cancer in Japanese patients. J Hum Genet 58(12):794–798CrossRefPubMedGoogle Scholar
  55. 55.
    van Gelder T, van Schaik RH, Hesselink DA (2014) Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol 10(12):725–731CrossRefPubMedGoogle Scholar
  56. 56.
    Lancia P, Jacqz-Aigrain E, Zhao W (2015) Choosing the right dose of tacrolimus. Arch Dis Child 100(4):406–413CrossRefPubMedGoogle Scholar
  57. 57.
    Birdwell KA et al (2015) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98(1):19–24CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Watanabe N et al (2010) Relationship between tacrolimus blood concentrations and clinical outcome during the first 4 weeks after SCT in children. Bone Marrow Transplant 45(7):1161–1166CrossRefPubMedGoogle Scholar
  59. 59.
    Nair SS et al (2015) Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level. Exp Clin Transplant 13(Suppl 1):197–200PubMedGoogle Scholar
  60. 60.
    Oetting WS et al (2016) Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant 16(2):574–582CrossRefPubMedGoogle Scholar
  61. 61.
    Yaowakulpatana K et al (2016) Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation. Eur J Clin Pharmacol 72(3):277–283CrossRefPubMedGoogle Scholar
  62. 62.
    Mac Guad R et al (2016) Effects of CYP3A5 genetic polymorphism on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc 48(1):81–87CrossRefPubMedGoogle Scholar
  63. 63.
    Fathy M et al (2016) Impact of CYP3A5 and MDR-1 gene polymorphisms on the dose and level of tacrolimus among living-donor liver transplanted patients: single center experience. Biomarkers 21(4):335–341CrossRefPubMedGoogle Scholar
  64. 64.
    Xue F et al (2014) CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients. Pediatr Transplant 18(2):166–176CrossRefPubMedGoogle Scholar
  65. 65.
    Karran P, Attard N (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8(1):24–36CrossRefPubMedGoogle Scholar
  66. 66.
    Thompson AJ et al (2014) The cost-effectiveness of a pharmacogenetic test: a trial-based evaluation of TPMT genotyping for azathioprine. Value Health 17(1):22–33CrossRefPubMedGoogle Scholar
  67. 67.
    Gisbert JP et al (2006) Thiopurine methyltransferase (TPMT) activity and adverse effects of azathioprine in inflammatory bowel disease: long-term follow-up study of 394 patients. Am J Gastroenterol 101(12):2769–2776CrossRefPubMedGoogle Scholar
  68. 68.
    Xin HW et al (2009) Relationships between thiopurine S-methyltransferase polymorphism and azathioprine-related adverse drug reactions in Chinese renal transplant recipients. Eur J Clin Pharmacol 65(3):249–255CrossRefPubMedGoogle Scholar
  69. 69.
    Wang L et al (2010) Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet Genomics 20(6):401–405CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Relling MV et al (2011) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mauri MC et al (2014) Clinical pharmacology of atypical antipsychotics: an update. EXCLI J 13:1163–1191PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hsia Y et al (2014) Psychopharmacological prescriptions for people with autism spectrum disorder (ASD): a multinational study. Psychopharmacology 231(6):999–1009CrossRefPubMedGoogle Scholar
  73. 73.
    Thyssen A et al (2010) Population pharmacokinetics of oral risperidone in children, adolescents and adults with psychiatric disorders. Clin Pharmacokinet 49(7):465–478CrossRefPubMedGoogle Scholar
  74. 74.
    Yoo HD et al (2012) Population pharmacokinetic analysis of risperidone and 9-hydroxyrisperidone with genetic polymorphisms of CYP2D6 and ABCB1. J Pharmacokinet Pharmacodyn 39(4):329–341CrossRefPubMedGoogle Scholar
  75. 75.
    Vanwong N et al (2016) Impact of CYP2D6 polymorphism on steady-state plasma levels of risperidone and 9-hydroxyrisperidone in Thai children and adolescents with autism spectrum disorder. J Child Adolesc Psychopharmacol 27(2):185–191CrossRefPubMedGoogle Scholar
  76. 76.
    Ngamsamut N et al (2016) 9-hydroxyrisperidone-induced hyperprolactinaemia in Thai children and adolescents with autism spectrum disorder. Basic Clin Pharmacol Toxicol 119(3):262–272CrossRefGoogle Scholar
  77. 77.
    Vandenberghe F et al (2015) Genetics-based population pharmacokinetics and pharmacodynamics of risperidone in a psychiatric cohort. Clin Pharmacokinet 54(12):1259–1272CrossRefPubMedGoogle Scholar
  78. 78.
    Gatanaga H et al (2007) Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis 45(9):1230–1237CrossRefPubMedGoogle Scholar
  79. 79.
    Gounden V et al (2010) Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in south African HIV-infected patients. AIDS Res Ther 7:32CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Weinshilboum R, Wang L (2004) Pharmacogenomics: bench to bedside. Nat Rev Drug Discov 3(9):739–748CrossRefPubMedGoogle Scholar
  81. 81.
    Ritchie MD (2012) The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era. Hum Genet 131(10):1615–1626CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Vivot A et al (2015) Guidance for pharmacogenomic biomarker testing in labels of FDA-approved drugs. Genet Med 17(9):733–738CrossRefPubMedGoogle Scholar
  83. 83.
    Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526(7573):343–350CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429(6990):464–468CrossRefPubMedGoogle Scholar
  85. 85.
    Berm EJ et al (2016) Economic evaluations of Pharmacogenetic and Pharmacogenomic screening tests: a systematic review. Second update of the literature. PLoS One 11(1):e0146262CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Mills R, Haga SB (2013) Clinical delivery of pharmacogenetic testing services: a proposed partnership between genetic counselors and pharmacists. Pharmacogenomics 14(8):957–968CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Sukasem C, Chantratita W (2016) A success story in pharmacogenomics: genetic ID card for SJS/TEN. Pharmacogenomics 17(5):455–458CrossRefPubMedGoogle Scholar
  88. 88.
    Barajas MR et al (2015) A patient-centered approach to the development and pilot of a warfarin pharmacogenomics patient education tool for health professionals. Curr Pharm Teach Learn 7(2):249–255CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Plothner M et al (2016) Cost-effectiveness of pharmacogenomic and pharmacogenetic test-guided personalized therapies: a systematic review of the approved active substances for personalized medicine in Germany. Adv Ther 33(9):1461–1480CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Plumpton CO et al (2016) A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. PharmacoEconomics 34(8):771–793CrossRefPubMedGoogle Scholar
  91. 91.
    Scott SA (2011) Personalizing medicine with clinical pharmacogenetics. Genet Med 13(12):987–995CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Jain KK (ed) (2015) Textbook of personalized medicine, 2nd edn. Humana Press, Basel, p 732Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
  2. 2.Laboratory for PharmacogenomicsSomdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand

Personalised recommendations