Major Experimental Facilities for Development of Accelerator-Driven Subcritical System

  • Vinod Kumar VermaEmail author
  • Karel Katovsky
Part of the Green Energy and Technology book series (GREEN)


Although the nuclear waste available in USA is in comparable amount that in Europe, yet, the EUROpean research program for the TRANSmutation of high-level nuclear waste in accelerator-driven systems (EUROTRANS) is initiated and funded heavily by the European Commission within its 6th Framework Program and it involves more than 40 partners which include research agencies, universities and nuclear industries. Initially, the program was planned for (i) advance design of a transmuter including its components including conceptual industrial design (ii) developing coupling of accelerator with the reactor (iii) studies related to advance fuels for transmuters (iv) studies and investigation of structure materials and heavy liquid metal technology and (v) collection of nuclear data with required precision.


  1. 1.
    Andriamonje, S., et al.: Experimental determination of the energy generated in nuclear cascades by a high energy beam. Phys. Lett. B 348, 697 (1995)CrossRefGoogle Scholar
  2. 2.
    Rubbia, C.: Resonance enhanced neutron captures for element activation and waste transmutation. CERN Internal Report, CERN/LHC/97–04 (EET), June 1997Google Scholar
  3. 3.
    Abanades, A., et al.: CERN-SL-2001-033-EET Report (2001)Google Scholar
  4. 4.
    Ferrari, A., Sala, P.R.: The physics of high energy reactions’ lectures at ICTP. In: Trieste Workshop, Apr 15–May 1996. Also, Fasso, A., Ferrai, A., et al.: A comparison of FLUKA simulations with measurements of fluence and dose in calorimeter structures. Nucl. Instrum. Meth. A332, 459 (1993)Google Scholar
  5. 5.
    European Commission, Community Research, Project Report, Nuclear Science and Technology, Neutron Driven Nuclear Transmutation by Adiabatic Resonance Crossing (TARC), EUR 19117 EN. European Commission, Luxemberg (1999)Google Scholar
  6. 6.
    OECD/NEA Data bank, Issy-les Moulineaux, France (1994)Google Scholar
  7. 7.
    Wang, T., et al.: Measurements of the total cross section and resonance parameters of molybdenum using pulsed neutrons generated by the electron linac. Nucl. Instrm. Method. Phys. Res. B266, 561 (2008) Google Scholar
  8. 8.
    Zugec, P., et al.: Experimental neutron capture data of 58Ni from the CERN n_TOF facility. Phys. Rev. C89, 014605 (2014)Google Scholar
  9. 9.
    Guerrero, C., et al.: Performance of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. J. 49A, 27 (2013) and Tobias J.W., et al.: High precision measurements of the 238U (n, γ) cross sections at the n_ToF facility CERN. In: Proceedings of NEMEA-7/CIELO Workshop, Copy right OECD, pp. 149–157 (2014)Google Scholar
  10. 10.
    Larson, N.M.: RSICC Peripheral Shielding Routine Collection SAMMY-M2a: A Code System for Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations (PSR-158, SAMMY-M2a). Oak Ridge National Laboratory (1999)Google Scholar
  11. 11.
    Lane, A.M., Thomas, R.G.: R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257 (1958)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mughabghab, S.F.: Atlas of Neutron Resonances, 5th edn. National Data Center, BNL, Upton, USAGoogle Scholar
  13. 13.
    Zugec, P., et al.: Data available in article, arXiv:1402.1032v1 [nucl-ex], 5 Feb 2014
  14. 14.
    Lederer, C., et al.: Neutron Capture Cross Section of Unstable 63Ni: Implications for Stellar Nucleosynthesis (2013). arXiv:1304.3310v1 [nucl-ex], 11 Apr 2013
  15. 15.
    Abbondanno, U., et al.: Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF). Phys. Rev. Lett. 93, 161103 (2004)CrossRefGoogle Scholar
  16. 16.
    Fujii, K., et al.: International Conference on Nuclear Data for Science and Technology (2007)., or
  17. 17.
    Domingo-Pardo, C., et al.: New measurement of neutron capture resonances of 209Bi. Phys. Rev. C 74, 025807 (2006)CrossRefGoogle Scholar
  18. 18.
    Aert, G., et al.: Neutron capture cross section of 232Th measured at the n_TOF facility at CERN in the unresolved resonance region up to 1 MeV, Phys. Rev. C 73, 054610 (2006), also,
  19. 19.
    Tobias, J.W., et al.: High-precision measurement of the 238U(n,g) cross-section at the n_TOF facility, CERN, NEMEA-7/CIELO Workshop Proceedings, p. 149 (2014)Google Scholar
  20. 20.
    Derrien, H., et al.: Neutron Resonance Parameters of 238U and the Calculated Cross sections from the Reich Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV, ORNL/TM-2005/241 (2005)Google Scholar
  21. 21.
    Paradela, C., et al.: Proceedings of the Final Scientific EFNUDAT Workshop. In: Chiaveri, E. (ed.) p. 33, 30 Aug–2 Sept 2010. CERN, Geneva (2010). Also, Phys. Rev. C82, 034601 (2010)Google Scholar
  22. 22.
    González, E.: On Behalf of the n_ToF Collaboration: Neutron Cross-Section for P&T and ADS at the n_ToF Facility at CERN (2010).
  23. 23.
    IREN Project. Intense Resonance Neutron Source. Compiled by A.K. Krasnykh, V.L. Lomidze, A.V. Novokhatsky, Yu, P. Popov, W.I. Furman. Frank Laboratory of Neutron Physics, JINR, Dubna, 1994 and see V.L. Aksenov et al. Acta Phys. Hung. 75(i-4), 341 (1994)Google Scholar
  24. 24.
    Antropov, V., Dolya, S., Kaminsky, A., Krasnykh, A., Laziev, E., Pjataev, V., Shvets, V., Sumbaev, A.: IREN Test Facility at JINR, LINAC 96, pp. 505–507.
  25. 25.
    Meshkov, I., Sisakian, A., Trubnikov, G.: IPAC 10, The First International Particle Accelerator Conference, Kyoto, Japan, 23–28 May 2010Google Scholar
  26. 26.
    Logatchev, P.V., et al.: Intense Resonance Neutron Source (IREN) A New Pulsed Source for Nuclear Physical and Applied Applications,
  27. 27.
    Jeneva, N.B., et al.: Future Neutron Data Activity on the Neutron Source IREN (2011).
  28. 28.
    Advance Materials for Energy.
  29. 29.
    Persic, A.: TRIGLAV—A Program Package for Research Reactor Calculations. J. Stefan Report, US-DP-7862 (1998)Google Scholar
  30. 30.
    Persic, A., Ravnik, M., Zagar, T.: European Nuclear Society, Berne (Switzerland), Belgian Nuclear Society (Belgium), International Atomic Energy Agency, Vienna (Austria), 217 p, pp. 187–191 (1999).
  31. 31.
    Karch, J., et al.: Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A50, 78 (2014)Google Scholar
  32. 32.
    Nagamiya, S.: JAER-KEK joint project on high intensity proton accelerators. In: Proceedings of International Conference on Radiation Shielding (ICRS-9), Tsukuba, 18–21 Oct 1999. J. Nucl. Sci. Technol. (Supplement 1) 40 (2000)Google Scholar
  33. 33.
    JAERI-Tech 2000-003/KEK Report 99-5 (2000) (In Japanese). See also The Joint Project for High-Intensity Proton Accelerators, JAERI-Tech 056/KEK Report 99-4 (1999). Also see,
  34. 34.
    Teshigawara, M., Watanabe, N., Kai, T., Nakashima, H., Nagao, T., Oyama, Y., Ikeda, Y., Kosako, K.: Neutronic Study on the JAERI 5 MW Spalltion Neutron Source-Neutronic Performance of the Reference Target-Moderator-Reflector System and the Target Shape/Size Effects, JAERI-Research 99-020, Mar 1999Google Scholar
  35. 35.
    Maekawa, F., et al.: First neutron production utilizing J-PARC pulsed spallation neutron source JSNS and neutronic performance demonstrated. Nucl. Instrm. Meth. Phys. Res. 620, 159 (2010)Google Scholar
  36. 36.
    Sakasai K., et al.: Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments. Quantum Beam Science 1, 10 (2017) and see, UCN at KEK: Ultra Cold Neutron Source.
  37. 37.
    Masatoshi F., et al.: 1-MW pulsed spallation neutron source (JSNS) at J-PARC. J. Neutron News 22, 15 (2011) and CrossRefGoogle Scholar
  38. 38.
    Paranov, D.V., Paranova, E.D.: Generation IV Concepts USSR and Russia.
  39. 39.
    Soule, R., et al.: Neutronic studies in support of accelerator-driven systems: The MUSE experiments in the MASURCA facility. Nucl. Sci. Eng. 148, 124 (2004)Google Scholar
  40. 40.
    Berglöf, C., et al.: Pulsed Neutron Source Reference Measurements in the Subcritical Experiment YALINA-booster. ADS/ET-5. file:///G:/Book%20on%2014072017/Book%20on%20ADS27032017/Chapter%207KK/YELINA%20booster.pdf Google Scholar
  41. 41.
    Persson, C.-M.: Reactivity Determination and Monte Carlo Simulation of the Subcritical Reactor Experiment—“Yalina”. KTH Engineering Science. ISBN 91-7178-015-7, Universitetsservice US-AB, Stockholm (2005)Google Scholar
  42. 42.
    Sjöstrand, N.G.: Measurement on a subcritical reactor using a pulsed neutron source, Arkiv för fysik 11, 13 (1956)Google Scholar
  43. 43.
    Billebaud, A., Baeten, P., Aït Abderrahim, H., Ban, G., Baylac, M., et al.: The GUINEVERE project for accelerator driven system physics. In: International Conference GLOBAL 2009. The Nuclear Fuel Cycle: Sustainable Options Industrial Perspectives, Sep 2009, Paris, France, pp. 1809–1815 (2009). Also, HAL Id: in2p3-00414431
  44. 44.
    Baylac, M.: Some high lights of ADS programs in Europe. In: 1st International Workshop on Accelerator-Driven Sub-Critical Systems & Thorium Utilization, 27–29 Sept 2010, Virginia Tech.
  45. 45.
    Iyengar, P.K., Srinivasan, M., Nargundkar, V.R., Chandramoleshwar, K., Subha Rao, K., Pasupathy, C.S., Das, S., Basu, T.K., Job, P.K.: PURNIMA fast critical facility, experiments and results. In: Proceedings of the Indo–Soviet Seminar on Fast Reactors, Kalpakkam, India, pp. 249–268 (1972)Google Scholar
  46. 46.
    Basu, T.K., Radha, E., Reddy, C.P., Ganesan, S.: (evaluators) NEA/NSC/DOC/(95)03/I, vol. 1, PU-COMP-FAST-004, 30 Sept 2012Google Scholar
  47. 47.
    Srinivasan, M., Chandramoleshwar, K., Job, P.K., Pasupathy, C.S., Subba Rao, K., Ray, A.K., Patil, R.K., Ramanujam, A.: Safety Analysis Report of Purnima-II: BeO Reflected U-233 Uranyl Nitrate Solution Reactor Experiment. BARC/I-790, Bhabha Atomic Research Centre (1984)Google Scholar
  48. 48.
    Srinivasan, M., Chandramoleshwar, K., et al.: 233U fueled homogeneous reactor PURNIMA-II: design features and experimental results. Paper Presented at the Seminar on Fast Reactor Fuel Cycle, IGCAR, Kalpakkam, 10–12 Feb 1986Google Scholar
  49. 49.
    Basu, T.K., Radha, E., Reddy, C.P., Rasheed, K.K., Ganesan, S. (evaluators): PURNIMA-II: U-233 Uranyl Nitrate Solution Reactor with Beryllium Oxide Reflector, NEA/NSC/DOC/(95)03/V, vol. V, U233-SOL-THERM-007Google Scholar
  50. 50.
    Kumar, R., Degweker, S.B., Patel, T., Bisnoi, S., Adhikari, P.S.: Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source. In: Proceedings of the Second International Workshop on Accelerator-Driven Sub-critical Systems and Thorium Utilization (2011). Also see
  51. 51.
    Radha, E., Reddy, C.P., Ganesan, S., Srinivasan, G., Ramalingam, P.V., Raj, B. (evaluators): Kalpakam Mini (KAMINI) Reactor: Beryllium-Oxide Reflected Water-Moderated 233U-Fueled Reactor. NEA/NSC/DOC/(95)03/V, vol. V, U233-MET-THERM-001Google Scholar
  52. 52.
    Sinha, A., et al.: BRAHMMA: A compact experimental accelerator driven subcritical facility using D-T/D-D neutron source. Ann. Nucl. Energy 75, 590 (2015)CrossRefGoogle Scholar
  53. 53.
    Sharma, M.: Transmutation of Long-Lived Isotopes of Conventional Reactors Using A.D.S. Concept. Ph.D. thesis, University of Rajasthan, Jaipur (2010)Google Scholar
  54. 54.
    Barashenkov, V.S.: Monte Carlo Simulation of ionization and Nuclear Processes Initiated by Hadron an Ion Beams in Media. Comput. Phys. Commun. 126, 28 (2000)CrossRefGoogle Scholar
  55. 55.
    Adam, J., et al.: Measurements of the neutron fluence on the spallation source at dubna. KERNTECHNIK (J. Nucl. Eng. Energ. Syst. Radiat. Radiol. Prot.) 70 127 (2005)CrossRefGoogle Scholar
  56. 56.
    Adam, J., Bhatia, C., Katovsky, K., Kumar, V., Majerle, M., Pronskikh, V.S., Khilmanovich, A.M., Martsynkevich, B.A., Zhuk, I.V., Golovatiouk, V.M., Westmeier, W., Solnyshkin, A.A., Tsoupko-Sitnikov, V.M., Potapenko, A.S.: A study of reaction rates of (n,f), (n,γ) and (n,2n) reactions in natU and 232Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam. Eur. Phys. J. A 47, 85 (2011)CrossRefGoogle Scholar
  57. 57.
    Bhatia, C., Kumar, V.: Book: Role of (n, xn) Reactions in Accelerator Driven Sub-critical Systems. Lap-Lambert, Germany (2011). ISBN 978-3-8465-0684-4Google Scholar
  58. 58.
    Abanades, A., Aleixandre, J., Andriamonje, S., et al.: Results from the TARC experiment: Spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing. Nucl. Inst. Meth. A 478, 577 (2002)CrossRefGoogle Scholar
  59. 59.
    Hendricks, J.S., et al.: MCNPX, Version 2.6.c, LA-UR-06-7991 (2006)Google Scholar
  60. 60.
    Adam, J., et al.: A study of nuclear transmutation of Th and natU with neutrons produced in a Pb target and U blanket irradiated by 1.6 GeV deuterons. Eur. Phys. J. A43, 159 (2010)CrossRefGoogle Scholar
  61. 61.
    Bhatia, C., Adam, J., Kumar, V., Katovsky, K., Majerle, M., Solnyshkin, A.A., Tsoupko-Sitnikov, V.M.: A Study of non-elastic reaction rates for the A.D.S. materials in the environment of spallation neutrons produced by 1.6 GeV d-beam. Appl. Radiat. Isot. 70, 1254 (2012)CrossRefGoogle Scholar
  62. 62.
    Krivopustov, M.I., Chultem, D.: Experiments on electronuclear technology and transmutation of nuclear waste using synchrophasotron beams. JINR News Dubna 3, 27 (1998)Google Scholar
  63. 63.
    Krivopustov, M.I., Chultem, D., Tumendelger, T., et al.: Modeling of the electronuclear method of energy production and study of radioactive waste transmutation using a proton beam of the JINR synchrophasotron/nuclotron: research program of the laboratory of high energies. JINR. In: Baldin, A.M. (ed.) JINR, 99–266. Dubna, pp. 135–139 (1999). Book of Abstracts of the 3rd International Conference on Accelerator Driven Transmutation Technologies and Applications, (1999) Praha, Czech Republic, 7–11 June 1999, p. 55Google Scholar
  64. 64.
    Barashenkov, V.S., Kumawat, H., Lobanova, V.A., Kumar, V.: Mathematical model of the electronuclear set-up on the beam of JINR Synchrotron. Nucl. Instr. Meth. Phys. Res. B, 217, 352 (2004)CrossRefGoogle Scholar
  65. 65.
    Adam, J., et al.: Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system ‘Energy plus Transmutation’ by relativistic protons. Pramana J. Phys. 68, 201 (2007)Google Scholar
  66. 66.
    MONC.: Monte Carlo Nucleon Transport Code. Accessed on 19 Dec 2016 (BARC internal access only)
  67. 67.
    Kumar, V., Tundwal, A., Katovsky, K., Sharma, M.: A review of nuclear waste transmutation using accelerator beams up to several GeV. Talk Presented at 17th International Scientific Conference on EPE-2016, Praha, Czech Republic (2016).
  68. 68.
    Baldin, A.A., Belov, E.M., Galanin, M.V., et al.: Nuclear relativistic technologies (RNT) for energy production and utilization of spent nuclear fuel. Results of first experiments on physics justification of RNT. Particles Nucl. Lett. 6, 1007 (2011) (in Russian). JINR Preprint E1-2011-24, Dubna (2011)Google Scholar
  69. 69.
    Furman, W., et al.: Recent results of the study of ADS with 500 kg natural uranium target assembly QUINTA irradiated by deuterons with energies from 1 to 8 GeV at JINR NUCLOTRON. 2012 Proceedings of Science (Baldin ISHEPP XXI 086).
  70. 70.
    Asquith, N.L., et al.: Activation of 197Au and 209Bi in a fast spectrum sub-critical assembly composed of 500 kg natural uranium irradiated with 1 and 4 GeV deuterons. Ann. Nucl. Energy 63, 742 (2014)CrossRefGoogle Scholar
  71. 71.
    Pelowitz, D.B.: MCNPX User’s Manual Version 2.7.0, LA-CP-11-00438 (2011)Google Scholar
  72. 72.
    Adam, J., et al.: Measurement of the high energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4 and 8 GeV energy. Phys. Procedia 80, 94 (2015)CrossRefGoogle Scholar
  73. 73.
    De Bruyn, D.: Engineering Design of the MYRRHA (Design Evolution from MYRRHA to XT-ADS) Part IX, School on Physics, Technology and Applications of Accelerator Driven Systems (ADS), 19–30 Nov 2007. ICTP, 1858-14 and Abderrahim, H.A., et al.: MyRRHA–A Multipurpose Fast Spectrum Research Reactor. Energ. Convers. Manag. 63, 4 (2012)Google Scholar
  74. 74.
    Mueller, A.C.: Transmutation of Nuclear Waste and the Future MYRRHA Demonstrator.
  75. 75.
    Polanski, A.: Monte Carlo modeling of electronuclear processes in experimental accelerator driven systems. Acta Phys. Polonica, B11(1), 95 (2000)Google Scholar
  76. 76.
    Barashenkov, V.S., Puzynin, I.V., Polanski, A.: Mathematical experiments with electronuclear systems. J. Comput. Meth. Sci. Eng. 2(1–2), 5 (2002)Google Scholar
  77. 77.
    Barashenkov, V.S., Polanski, A., et al.: Fast sub-critical assembly with MOX fuel for research on nuclear waste transmutation. Belarus NSA J. Phys. Tech. 3, 150–153 (2001)Google Scholar
  78. 78.
    Shvetsov, V.N., et al.: Sub critical assembly at Dubna (SAD): coupling all major components of accelerator driven subcritical system (ADS) for nuclear waste incineration. In: International Symposium on Utilization of Accelerators, Dubrovniik, Croatia, 5–9 June 2005.
  79. 79.
    Polanski, A.: Simulations of accelerator driven systems (ADS). In: Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies.…/POLANSKI.ppt
  80. 80.
    Tichý, P., Suchopár, M.: Future usage of quasi-infinite depleted uranium target (BURAN) for benchmark studies. In: Proceedings of Science, XXII International Baldin Seminar on High Energy Physics Problems, JINR, Dubna, Russia, 15–20 Sept 2014.
  81. 81.
    Furman, W.: Results of experiments 2012–2013 with massive uranium target setup QUINTA at nuclotron and plans for 2014–2016. In: ISINN XXI, Alushta, Ukraine, May 20–25 2013Google Scholar
  82. 82.
    Bowman, C., et al.: GEM*STAR* consortium staging and demonstration. In: 1st International Workshop on ADSS and Thorium Utilization, Blacksburg, VA, 27–29 Sept 2010Google Scholar
  83. 83.
    Huang, T.M., et al.: High power input couplers for C-ADS. In: Proceedings of SRF 2015, Whistler, BC, Canada, THPB101, p. 1383 (2015). ISBN 978-3-95450-178-6Google Scholar
  84. 84.
    Tsujimoto, K., et al.: Neutronics design for lead-bismuth cooled accelerator—driven system for transmutation of minor actinide. J. Nucl. Sci. Technol. 41, 21 (2004)CrossRefGoogle Scholar
  85. 85.
  86. 86.
    Kapoor, S.S.: Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation. Pramana J. Phys. 59, 941 (2002)CrossRefGoogle Scholar
  87. 87.
    Kumar, V. et al. (ed.).: Proceedings of Workshop on Physics of Accelerator Driven Subcritical System. Pramana J. Phys. 68 (2007) (complete issue)Google Scholar
  88. 88.
    Banerjee, S.: Physics of ADS for energy and transmutation. In: Inaugural Talk at the Workshop on Physics of ADS, Jaipur, India, 23–25 Jan 2006Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of RajasthanJaipurIndia
  2. 2.GGSIP UniversityNew DelhiIndia
  3. 3.Department of Electrical Power Engineering, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations