Advertisement

Requirement of Nuclear Data

  • Vinod Kumar Verma
  • Karel Katovsky
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter, we discuss requirement of nuclear data from the point of accuracy and sectorial demand of different kinds of data for the development of the ADSS technology.

References

  1. 1.
    Van Atta, C.M., Lee, J.D., Heckrotte, W: The electronuclear conversion of fertile to fissile material UCRL 52144, Oct 1976 and Van Atta, C.M.: A brief history of the MTA project. In: Proceedings of Information Meeting on Accelerator-Breeding, BNL Upton, New York, pp. 7–29, 18–19 Jan 1997. CONF-770107Google Scholar
  2. 2.
    Bartholomew, G.A., Tunnicliffe, P.R.: The AECL Study for an Intense Neutron Generator AECL-2600 (1966)Google Scholar
  3. 3.
    Knebel, J.U., Heusener, G.: Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe. Internationale Zeitschrift für Kernenergie Atw Jg. (2000) Heft 6 (2000) 350Google Scholar
  4. 4.
    Ikeda, Y.: Nuclear Data Relevant to accelerator driven system. Nucl. Sci. Technol. 39(Supplement 2), 13–18 (2002)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Koning, A.J., et al.: Nuclear data for accelerator driven systems. Nuclear models, experiments and data libraries. Nucl. Instrm. Meth. A414, 49 (1998)CrossRefGoogle Scholar
  7. 7.
    Leray, S.: Nuclear reactions at high energy. Lectures Delivered at the Workshop on Nuclear Data for Science and Technology, Accelerator Driven Waste Incineration, Trieste (2001). http://users.ictp.it/~pub_off/lectures/lns012/Leray.pdf
  8. 8.
  9. 9.
    Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72(11), 1114 (1947) and Domengetroy, V.B.: Investigations Related to the Generation of Reaction Products in the Target of Accelerator Driven Systems for Nuclear Waste Incineration, FZKA 6908 (2003)CrossRefGoogle Scholar
  10. 10.
    Parel, R.E., Lichtenstein, H.: User Guide to LCS: The LAHET Code System, Report LA-UR-89-3014 (1989)Google Scholar
  11. 11.
    Glasbrenner, H., et al.: Polonium formation in Pb–55.5Bi under proton irradiation, J. Nucl. Mat. 335, 270 (2004)CrossRefGoogle Scholar
  12. 12.
    Artisyuk, V., Saito, M., Sawada, T.: Current status of spallation product data: Nuclear engineering view-point. In: JAERI-Conference, p. 27 (2004–05). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/116/36116662.pdf
  13. 13.
    Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. OECD NEA Report (2002). ISBN 92-64-18482-1Google Scholar
  14. 14.
    Amaya, L.O., Braet, J.: Purification of lead-bismut eutectic used in accelerator driven systems—9411. In: WM2009 Conference, Phoenix, AZ, 1–5 Mar 2009Google Scholar
  15. 15.
    Gromov, B.F., et al.: Liquid-metal lead-bismuth target for high-energy protons as an intense source of neutrons in accelerator-controlled systems. At. Energ. 80(5), 378 (1996)CrossRefGoogle Scholar
  16. 16.
    Buongiorno, J., Larson, C.L., Czerwinski, K.R.: Discussion on Polonium Extraction System for Pb-Bi cooled Reactors. Report FR0202114. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/031/33031171.pdf
  17. 17.
    Sugawara, T., et al.: Conceptual design study of beam window for accelerator-driven system, J. Nucl. Sci. Technol. 47, 953 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, H.: Design of high power graphene beam window. In: MOOCA 03, Proceedings of IPAC 2014, Dresden, Germany, p. 45. ISBN 978-3-95450-132-8Google Scholar
  19. 19.
  20. 20.
    Shibata, K., et al.: JENDL -4.0: A new library for innovative nuclear energy systems. In: Proceedings of the International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea (ND-2010). http://wwwndc.jaea.go.jp/jendl/j40/j40.html. Accessed 26–30 Apr 2010
  21. 21.
    Jacqmin, R., et al.: Status of the JEFF-3 project. In: Proceedings of the International Conference on Nuclear Data for Science and Technology, vol. 1, p. 54 (2002). https://www.nea.fr/dbforms/data/eva/evatapes/jeff_31/CrossRefGoogle Scholar
  22. 22.
  23. 23.
    http://www.talys.eu/tendl-2009/. ftp:/nrg.eu/pub/www/talys/tendl-2009beta/Document/wonder09_rochman.pdf
  24. 24.
    Shubin, Y.N., et al.: Cross Section Data Library MENDL-2 to Study Activation as Transmutation of Materials Irradiated by Nucleons of Intermediate Energies. Report INDC (CCP)-385, International Atomic Energy Agency, May 1995Google Scholar
  25. 25.
    Koning, A.J., et al.: Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, 26 Sept–1 Oct 2004 and www.talys.eu/
  26. 26.
    Yamano, N.: Tables of isotope production cross-sections (ACSELAM Library). (Sumitomo Atomic Energy). http://wwwndc.jaea.go.p/ftpnd/sae/acl.html. Also see Fukahori, T.: ALICE-F calculation of nuclear data up to 1 GeV. In: Proceedings of the Specialists Meeting on High Energy Nuclear Data, Tokai, p. 114, 3–4 Oct 1991, JAERI-M 92-039 (1992)
  27. 27.
    Barashenkov, V.S., Toneev, V.D.: Interaction of High Energy particles and Nuclei with Nuclei. Atomizdat, Moscow (1972)Google Scholar
  28. 28.
    Bhatia, C., Kumar, V.: Role of (n, xn) Reactions in ADSS. Lambert Academic Publishing (2011)Google Scholar
  29. 29.
    Taneike, M., et al.: Creep-Strengthening of Steel at High Temperatures using Nano-Sized Carbonitride Dispersions. Nature 424, 294 (2003)CrossRefGoogle Scholar
  30. 30.
    Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, NEA. https://www.oecd-nea.org/science/pubs/2015/7268-lead-bismuth-2015.pdf
  31. 31.
    Abe, F., et al.: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Mater. Sci. Eng., A 378, 299 (2004)CrossRefGoogle Scholar
  32. 32.
    Jianu, A., et al.: Creep-to-rupture tests of T91 steel in flowing Pb–Bi eutectic melt at 550 °C,   J. Nucl. Mat. 394, 102 (2009)CrossRefGoogle Scholar
  33. 33.
    Mantha, V., Mohanty, A.K., Satyamurthy, P.: Thermal hydraulic studies of spallation target for one-way coupled indian accelerator driven systems with low energy proton beam. Pramana J. Phys. 68, 355 (2007)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Konobeyev, A.Y., et al.: Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons. In: EPJ Web of Conferences, vol. 146, p. 02018 (2017). Accessed  https://doi.org/10.1051/epjconf/201714602018CrossRefGoogle Scholar
  36. 36.
    Konobeyev, A.Y., Fischer, U.: Complete gas production data library for nuclides from Mg to Bi at neutron incident energies up to 200 MeV. KIT Scientific Working Papers 36 (2015). ISSN: 2194-1629Google Scholar
  37. 37.
  38. 38.
    Konobeyev, A.Y., Fischer, U.: Advanced evaluations of displacement and gas production cross sections for chromium, iron, and nickel up to 3 Gev incident particle energy. https://www-nds.iaea.org/public/downloadendf/DXS/Displacement_XS/DXS3000(2011)/Description_of_methods/DXS_AccApp11.pdf
  39. 39.
    Konobeyev, A.Y., et al.: Improved displacement cross sections for structural materials irradiated with intermediate and high energy protons. https://www-nds.iaea.org/public/downloadendf/DXS/Displacement_XS/DXS3000.(2011)/Description_of_methods/DXS_AccApp07.pdf
  40. 40.
    Konobeyev, A.Y., et al.: Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons. In: EPJ Web of Conferences, vol. 146, p. 02018 (2017). Accessed  https://doi.org/10.1051/epjconf/201714602018CrossRefGoogle Scholar
  41. 41.
    OECD/NEA, Working Party on Multiscale Modelling of Fuels and Structural Materials for Nuclear Systems, Expert Group on Primary Radiation Damage. Primary radiation Damage in Materials. www.oecd-nea.org. NEA/NSC/DOC, 9 (2015)
  42. 42.
    Sosin, A., Bauer, W.: Atomic displacement mechanisms in metals and semiconductors. In: Dienes, G.J. (ed.) Studies in Radiation Effects in Solids, vol. 3, pp. 153–357. Gordon and Breach, New York (1969)Google Scholar
  43. 43.
    Drosd, R., Kosel, T., Washburn, J.: Temperature dependence of the threshold energy for Frenkel pair production in copper. J. Nucl. Mater. 69–70, 804 (1978)CrossRefGoogle Scholar
  44. 44.
    Roth, G., et al.: Energy dependence of the defect production at 78 °K and 400 °K in electron irradiated copper. Radiat. Effects 26, 141 (1975)CrossRefGoogle Scholar
  45. 45.
    Lucasson, P.: The production of Frenkel defects in metals. In: Robinson, M.T., Young Jr., F.N. (eds.) Fundamental Aspects of Radiation Damage in Metals. Oak Ridge National Laboratory, United States, pp. 42–65Google Scholar
  46. 46.
    Ganesan, S.: Nuclear data requirements for accelerator driven sub-critical systems—a roadmap in Indian context. Pramana J. Phys. 68, 257 (2007)CrossRefGoogle Scholar
  47. 47.
    Ganesan, S.: Nuclear data needed to develop new nuclear systems, role of n_TOF facilities to measure resonance cross-sections and nuclear data needs of thorium fuel cycle. In: Nuclear Physics and Astrophysics at CERN-NuPAC, Invited Oral Contribution, 10–12 Oct 2005Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of RajasthanJaipurIndia
  2. 2.GGSIP UniversityNew DelhiIndia
  3. 3.Department of Electrical Power Engineering, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations