Spallation Neutron Source, Multiplication and Possibility of Incineration

  • Vinod Kumar VermaEmail author
  • Karel Katovsky
Part of the Green Energy and Technology book series (GREEN)


Spallation neutron source is new and has fastly attracted the attention of both nuclear and reactor scientists from the point of its application in incineration of the radioactive waste and nuclear energy production from the fertile fuels. This is a basic lesson of accelerator-driven subcritical system and future copious source of neutron for a variety of applications useful for the material science.


  1. 1.
    Bothe, W., Becker, H.: Künstliche erregung von kern-γ-strahlen. Z. Physik. 66, 289 (1930)Google Scholar
  2. 2.
    Chadwick, J.: Proc. Royal Soc. (London). Ser. A 136, 692 (1932). Lorch, E.A.: Original Am-Be neutron source spectrum. Int. Jpn. Appl. Radiat. Isot. 24, 585 (1973)Google Scholar
  3. 3.
    Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72, 1114 (1947)CrossRefGoogle Scholar
  4. 4.
    Rubbia, C., et al.: Conceptual design of a fast neutron operated high power energy amplifier. CERN Report CERN/AT/95-44 (ET)Google Scholar
  5. 5.
    Rubbia, C.: A high gain energy amplifier operated with fast neutrons. In: AIP Conference Proceedings 346, International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas (NV), US (1994)Google Scholar
  6. 6.
    SINQ: The Swiss Spallation Neutron Source.
  7. 7.
    ISIS: ISIS Neutron and Muon Source.
  8. 8.
    SNS: Neutrons for New Discoveries and Solutions.
  9. 9.
    Futakawa, M., et al.: 1-MW Pulsed Spallation Neutron Source (JSNS) at J-PARC. Neutron News 22, 15–19. JSNS. (2011)CrossRefGoogle Scholar
  10. 10.
    Henderson, S., et al.: The Spallation Neutron Source accelerator system design. Nucl. Inst. Methods Phys. Res. A. 763, 610 (2014)Google Scholar
  11. 11.
    David, J.-C.: Spallation Reactions. A Successful Interplay between Modeling and Applications. arXiv:1505.03282v1 [nucl-ex], 13 May 2015
  12. 12.
    Kumar, V., eta al.: Neutron spallation source and the Dubna Cascade Code. Pramana-Jpn. Phys. 60, 469 (2003)CrossRefGoogle Scholar
  13. 13.
    Hilsher, D., et al.: Neutron multiplicity distribution for GeV proton induced spallation reactions on thin and thick targets of Pb and U. In: Proceedings of the International Workshop on Nuclear Methods for Transmutation of Nuclear Waste, edited by Khankhasayev, M.Kh., Plendl, H.S., Kurmanov, Z.B., p. 176 (1996)Google Scholar
  14. 14.
    Lee, Y.Y., et al.: Proc. ICANS-XIII PSI-Proc. 95(02), 802 (1995)Google Scholar
  15. 15.
    Polański A., Słowiński, B.: Neutron fields produced in heavy spallation targets by electron beams. In: International Conference on Recent Developments and Applications of Nuclear Technologies, 15–17 September 2008. Also see, Polański, A., Słowiński, B., Jackowski, T., Pacan, A.: Neutrons production in heavy extended targets by electrons of energy from 15 to 1000 MeV. Prog. Nucl. Energy 78, 1 (2015). Also see
  16. 16.
    Auditore, L., et al.: Study of a 5 MeV electron linac based neutron source. Nucl. Instr. Methods Phys. Res. B 229, 137 (2005)CrossRefGoogle Scholar
  17. 17.
    Roberts, J.A.: The Los Alamos Neutron Science Center (LANSCE). Neutron News 10(4), 11 (1999)CrossRefGoogle Scholar
  18. 18.
    Mason, T.E., et al.: Spallation Neutron Source in Oak Ridge: a powerful tool for materials research. Phys. B 385, 955 (2006). Also see,
  19. 19.
    Gabriel, T., et al.: Overview of the Spallation Neutron Source (SNS) with emphasis on target systems. J. Nucl. Mater. 318, 1 (2003)CrossRefGoogle Scholar
  20. 20.
    Eccleston, R., Wilson, C.: Correspondent’s reports: a guided tour of ISIS: 2004 update. Neutron News 15(1), 15 (2004)CrossRefGoogle Scholar
  21. 21.
    Penfold, J.: Scientific review: ISIS second target station: overview and progress. Neutron News 15(2), 9 (2004)CrossRefGoogle Scholar
  22. 22.
    Wagner, W., et al.: The Swiss spallation neutron source SINQ—developments and upgrades for optimized user service. Phys. B 385, 968 (2006)CrossRefGoogle Scholar
  23. 23.
    Wagner, W.: The Swiss Spallation Neutron Source SINQ-Layout, Operation, Utilization and R&D for Optimized Neutron Yield. Proc. ICANS-XVI 53 (2003). ISSN 1433-559XGoogle Scholar
  24. 24.
    Arai, M., Maekawa, F.: Japan Spallation Neutron Source (JSNS) of J-PARC. Nucl. Phys. News 19(4) (2009)CrossRefGoogle Scholar
  25. 25.
    Maekawa, F., et al.: First neutron production utilizing J-PARC pulsed spallation neutron source JSNS and neutronic performance demonstrated. Nucl. Inst. Methods Phys. Res. A 620, 159 (2010)CrossRefGoogle Scholar
  26. 26.
    Westmeier, W., et al.: Transmutation experiments on 129I, 139La and 237Np using the Nuclotron accelerator. Radiochim. Acta 93, 65 (2005)Google Scholar
  27. 27.
    Adam, J., Barashenkov, V.S., et al.: Measurement of the neutron fluence on the spallation source at Dubna. Kerntechnik 70, 127 (2005)CrossRefGoogle Scholar
  28. 28.
    Krivopustov, M.I., et al.: First experiments on transmutation studies of 129I and 237Np using relativistic protons of 3.7 GeV. J. Radioanalytical Nucl. Chem. 222, 267 (1997). JINR Dubna preprint E1-97-59. Krivopustov, M.I., et al.: First experiments with a large uranium blanket within the installation energy plus transmutation exposed to 1.5 GeV protons. Kerntechnik 68, 48 (2003)Google Scholar
  29. 29.
    Barashenkov, V.S., et al.: Mathematical model of the electronuclear set-up on the beam of JINR synchrotron. Nucl. Inst. Methods B 217, 352 (2004)CrossRefGoogle Scholar
  30. 30.
    Adam, J., et al.: A study of nuclear transmutation in Pb-target and U-blanket irradiated by 1.6 GeV deuteron. Eur. Phys. J. A 43, 159 (2010). Adam, J. et al.: A study of reaction rates of (n, f), (n, g) and (n, 2n) reactions in Unat and Th232 by the neutron fluence produced in the graphite set up (GAMMA 3) irradiated by 2.33 GeV deuteron beam. Eur. Phy. J. A 47, 85 (2011)Google Scholar
  31. 31.
    Adam, J., et al.: Measurement of the high energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4 and 8 GeV energy. Phys. Proc. 80, 94 (2015)CrossRefGoogle Scholar
  32. 32.
    Shvetsov, V., et al.: The Subcritical Assembly in Dubna (SAD)-Part I: coupling all major components of an Accelerator Driven System (ADS). Nucl. Instr. Methods Phys. Res. A 562, 883 (2006). Gudowski, W., et al.: The Subcritical Assembly in Dubna (SAD)-Part II: research program for ADS-demo experiment. Nucl. Instr. Methods Phys. Res. A 562, 887 (2006)Google Scholar
  33. 33.
    Abanades, A., et al.: Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing. Nucl. Instr. Methods Phys. Res. A 478, 577 (2002)Google Scholar
  34. 34.
    Borcea, C., et al.: Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl. Instr. Methods Phys. Res. A 513, 524 (2003)CrossRefGoogle Scholar
  35. 35.
    Barashenkov, V.S.: Monte Carlo simulation of ionization and nuclear processes initiated by hadron and ion beams in media. Comp. Phys. Commun. 126, 28 (2000)CrossRefGoogle Scholar
  36. 36.
    Breismeister, J.F. (ed.): LA-12625-M, MCNP (A General Monte Carlo N-Particle Transport Code, Version 4A). Los Alamos National Laboratory, Los Alamos, New Mexico, issued (November, 1993)Google Scholar
  37. 37.
    Tagliente, G.: n_TOF collaboration: the n_TOF facility at CERN. Brazilian J. Phys. 34(3A) (September, 2004)Google Scholar
  38. 38.
    Maglioni, C.: CERN EN-STI-TCD, Pb/Bi loop target for EURISOL kick-off meeting, 5/10/2012. and
  39. 39.
  40. 40.
  41. 41.
    Nelson, R.O., et al.: Stockpile stewardship and nuclear science with GEANIE at LANSCE/WNR, LLNL. Physics Division, Progress Report, Chapter 2, 64.; (1996)
  42. 42.
    Bol, A., et al.: A novel design for a fast intense neutron beam. Nucl. Instr. Meth. 214, 169 (1983)CrossRefGoogle Scholar
  43. 43.
    Kerveno, M., et al.: Measurement of 232Th (n, 5nγ) cross sections from 29 to 42 MeV. In: International Conference on Nuclear Data for Science and Technology (2007).
  44. 44.
    Kim, G.N.: Proceedings of LINAC, p. 383, Gyeongju, Korea. (2002)
  45. 45.
    Salomé, J.M., et al.: Neutron producing targets at GELINA. Nucl. Instr. Methods 179, 13 (1981). Mihailescu, L.C., et al.: A new HPGe setup at Gelina for measurement of gamma-ray production cross-sections from inelastic neutron scattering. Nucl. Instr. Methods Phys. Res. A 531, 375 (2004)Google Scholar
  46. 46.
    Antropov, V., et al.: IREN Test Facility at JINR.
  47. 47.
    Sharma, M.: Transmutation of long-lived isotopes of conventional reactors using A.D.S. Concept. Ph.D. thesis, University of Rajasthan, Jaipur (2010)Google Scholar
  48. 48.
    Katovsky, K.: Investigation of secondary neutrons and nuclei generated in reactions of high-energy protons and neutrons in uranium and plutonium targets. Ph.D. thesis, CTU, Prague (2008)Google Scholar
  49. 49.
    Bhatia, C., Kumar, V.: Role of (n, xn) reactions in Accelerator Driven Sub critical Systems. Published by LAP LAMBERT Academic Publishing GmbH & Co. KG (2011)Google Scholar
  50. 50.
    Kumar, V., et al.: CASCADE data for the A.D.S. materials for it benchmarking. In: Proceedings ARIA 2008, 1st Workshop on Accelerator Radiation Induced Activation, 13–17 October 2008, Paul Scherrer Institute, Switzerland. PSI Proceedings 09–01. ISSN 1019–0643, 30 (2009)Google Scholar
  51. 51.
    Kumar, V.: Role of (n, xn) reactions in ADS, IAEA-Benchmark and the Dubna CASCADE Code Pramana. J. Phys. 68, 315 (2007)Google Scholar
  52. 52.
    Koning, A.J., et al.: Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, 26 September–1 October 2004 and
  53. 53.
    Barashenkov, V.S., et al.: CASCADE program complex for Monte-Carlo simulation of nuclear processes initiated by high energy particles and nuclei in gaseous and condensed matter. JINR preprint R2-85-173 (1985). Barashenkov, V.S.: A cascade-evaporation model for photonuclear reactions. Nucl. Phys. A 231, 462 (1974)CrossRefGoogle Scholar
  54. 54.
    Kim, E., et al.: Measurements of neutron spallation cross sections of 12C and 209Bi in the 20- to 150-MeV energy range. J. Nucl. Sci. Eng. 129, 209 (1998)Google Scholar
  55. 55.
    Kim, E., et al.: Measurements of Neutron Spallation Cross Sections of 12C and 209Bi in the 20- to 150-MeV Energy Range. J. Nucl. Sci. Engg. 129, 209 (1998)Google Scholar
  56. 56.
    Uddin, M.S., et al.: Measurements of neutron induced activation of concrete at 64.5 MeV. Ann. Nucl. Energy 36, 1133 (2009)CrossRefGoogle Scholar
  57. 57.
    Accelerator Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. A Comparative Study.
  58. 58.
    See Exfore entry 33004001 on site
  59. 59.
    Cullen, D.E., et al.: ENDF/B-VII.0 Data testing for three fast critical assemblies. Report UCRL-TR-233310 (2007). Cullen, D.E.: PREPRO 2000:2000 ENDF/B pre-processing codes. Report IAEA-NDS-39, Rev. 10, 1 April 2000Google Scholar
  60. 60.
    Bhatia, C., Kumar, V.: Determination of neutron multiplication coefficient of the fuel elements irradiated by the spallation neutrons. Phys. Rev. C 81, 024614 (2010)Google Scholar
  61. 61.
    Dudnikov, A., Sedov, A.A.: RBEC-M lead-bismuth cooled fast reactor benchmarking calculations. International Atomic Energy Agency.\
  62. 62.
    Thermal Neutron Capture Cross sections and resonance integrals—Fission product nuclear data.
  63. 63.
    Carminati, F., Kadi, Y.: ADS Neutronic Benchmark (stage 1): a new approach to the design of accelerator driven systems. In: Proceedings of the International Atomic Energy Agency Technical Committee Meeting, Madrid, Spain, 17–19 September 1997Google Scholar
  64. 64.
    Tucek, K., et al.: IAEA Accelerator Driven System Neutronic Benchmark. In: Proceedings of the International Atomic Energy Agency Technical Committee Meeting, Madrid, Spain, 17–19 September 1997Google Scholar
  65. 65.
    Cetnar, J.: A method of transmutation trajectories analysis in accelerator driven system. In: Proceedings of IAEA Technical Committee meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation, Madrid, 17–19 September 1997Google Scholar
  66. 66.
    Cox, L.J.: LA-UR-11-01654: LNK3DNT Geometry Support: User Guidance for Creating and Embedding and

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of RajasthanJaipurIndia
  2. 2.GGSIP UniversityNew DelhiIndia
  3. 3.Department of Electrical Power Engineering, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations