Advertisement

Epigenome: The Guide to Genomic Expression

  • Ajit Kumar
  • Gulshan Wadhwa
Chapter

Abstract

Epigenetic research endeavours to empathize traditional gene regulation not under direct encoding of DNA sequence. Histone modifications, DNA methylation and binding of nonhistone proteins are well-identified mechanisms of epigenetic control of cellular phenotype by gene expression regulations. Environmental factors cause, wholly or partly, different human diseases. Environmental chemicals have long been accepted to cause many diseases through alterations in the genome or genetic effects. Epigenomics (i.e. beyond genomics) encompasses amalgamation of customary genomics with other branches of science like mathematics, computer science, biochemistry, chemistry, proteomics and molecular biology. It looks for the comprehensive analysis of heritable phenotypic changes, alterations in gene function/expression that are not independent of gene sequence. The epigenomic science offers and beckons novel opportunities to help and elevate our understanding of nuclear organization, regulation of transcription, developmental phenomena and diseases at molecular level. This article presents a comprehensive report about the existing computational strategies and approaches for studying the different factors of epigenetics, with special focus on important computational tools and biological databases. In addition, a brief introduction into epigenetics have also been outlined.

Keywords

Computational epigenomics DNA methylation Epigenetics Histone modification 

References

  1. Aguilera O et al (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109(1):243–251CrossRefPubMedGoogle Scholar
  2. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barker DJ, Osmond C (1988) Low birth weight and hypertension. BMJ Br Med J 297(6641):134CrossRefGoogle Scholar
  5. Bhasin M et al (2005) Prediction of methylated CpG in DNA sequences using a support vector machine. FEBS Lett 579(20):4302–4308CrossRefPubMedGoogle Scholar
  6. Bock C, Lengauer T (2007) Computational epigenetics. Bioinformatics 24(1):1–10CrossRefPubMedGoogle Scholar
  7. Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Ann Rev Gen 48:237–268CrossRefGoogle Scholar
  8. Campagna-Slater V et al (2011) Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 51(3):612–623CrossRefPubMedGoogle Scholar
  9. Chen M, Zhang L (2011) Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 16(23):1007–1018CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Am Soc Nut Adv Nutr 1:8–16CrossRefGoogle Scholar
  11. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5):24R–29RCrossRefPubMedGoogle Scholar
  12. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100CrossRefPubMedGoogle Scholar
  13. Collins FS et al (2003) A vision for the future of genomics research. Nature 422(6934):835–847CrossRefPubMedGoogle Scholar
  14. de Pretis S, Pelizzola M (2014) Computational and experimental methods to decipher the epigenetic code. Front Genet 5:335CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dodge JE et al (2002) de novo methylation of MMLV provirus in embryonic stem cells: CpG versus non- CpG methylation. Gene 289(1–2):41–48CrossRefPubMedGoogle Scholar
  16. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J (2009) Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eastvaran HP et al (2004) Replication- independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep 5(12):118Google Scholar
  18. Espada J, Esteller M (2007) Epigenetic control of nuclear architecture. Cell Mol Life Sci 64(4):449–457CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nature 5(6):446–455Google Scholar
  20. Feinberg AP (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28(10):1049–1052CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fraga MF et al (2005a) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400CrossRefPubMedGoogle Scholar
  22. Fraga MF et al (2005b) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frigola J et al (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549CrossRefPubMedGoogle Scholar
  24. Gitan RS et al (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12(1):158–164CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gonzalgo M, Jones P (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386(2):107–118CrossRefPubMedGoogle Scholar
  26. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60(1):5–20CrossRefPubMedGoogle Scholar
  27. Halkidou K et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189CrossRefPubMedGoogle Scholar
  28. Huang C, Wu JC (2013) Epigenetic modulations of induced pluripotent stem cells: novel therapies and disease models. Drug Discov Today Dis Model 9(4):e153–e160CrossRefGoogle Scholar
  29. Iizuka M, Smith MM (2003) Functional consequences of histone modifications. Curr Opin Genet Dev 13(2):154–160CrossRefPubMedGoogle Scholar
  30. Irizarry RA et al (2009) The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Gen 13:484–492CrossRefGoogle Scholar
  32. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070CrossRefPubMedGoogle Scholar
  33. Kaneda M et al (2004) Essential role for de novo methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903CrossRefPubMedGoogle Scholar
  34. Kanherkar RR et al (2014) Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2:67PubMedPubMedCentralGoogle Scholar
  35. Kawamura A et al (2010) Development of homogeneous luminescence assays for histone demethylase catalysis and binding. Anal Biochem 404(1):86–93CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kubota T et al (2012) Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 4(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  38. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266CrossRefPubMedGoogle Scholar
  39. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marchevsky AM et al (2004) Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks. J Mol Des 6(1):28–36Google Scholar
  42. Marmorstein R (2001) Structure and function of histone acetyltransferases. Cell Mol Life Sci 58:693–703CrossRefPubMedGoogle Scholar
  43. Martinez SR et al (2015) Epigenetic mechanisms in heart development and disease. Drug Discov Today 20(7):799–811CrossRefPubMedPubMedCentralGoogle Scholar
  44. Meissner A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877CrossRefPubMedPubMedCentralGoogle Scholar
  45. Okano M et al (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220CrossRefPubMedGoogle Scholar
  46. Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):245–257CrossRefGoogle Scholar
  47. Park LK, Friso S, Choi SW (2012) Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 71(1):75–83CrossRefPubMedGoogle Scholar
  48. Petrossian T, Clarke S (2009) Bioinformatics identification of novel methyltransferases. Epigenomics 1(1):163–175CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pfister S et al (2007) Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 35(7):e51CrossRefPubMedPubMedCentralGoogle Scholar
  50. Piplani S et al (2016) Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs. Comp Biol Chem 60:1–8CrossRefGoogle Scholar
  51. Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109(1):6–16CrossRefPubMedGoogle Scholar
  52. Pullirsch D et al (2010) The trithorax group protein Ash 2l and Saf – A are recruited to inactive X- chromosome at the onset of stable X inactivation. Development 137(6):935–943CrossRefPubMedPubMedCentralGoogle Scholar
  53. Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenetics 2(2):299–314CrossRefPubMedGoogle Scholar
  54. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55CrossRefPubMedGoogle Scholar
  55. Roberts RJ et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31(7):1805–1812CrossRefPubMedPubMedCentralGoogle Scholar
  56. Robinson MD, Pelizzola M (2015) Computational epigenomics: challenges and opportunities. Front Genet 6(88):1–3Google Scholar
  57. Robinson MD et al. (2014) Statistical methods for detecting differentially methylated loci and regions. Front Genet. 5:324: eCollection-2014Google Scholar
  58. Sato F et al (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609CrossRefPubMedGoogle Scholar
  59. Schumacher A et al (2006) Microarray based DNA methylation profiling: technology and application. Nucleic Acids Res 34(2):528–542CrossRefPubMedPubMedCentralGoogle Scholar
  60. Serman A et al (2006) DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol 30(3):665–671PubMedGoogle Scholar
  61. Song J et al (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113(4):264–268CrossRefPubMedGoogle Scholar
  62. Tammen SA et al (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34(4):753–764CrossRefGoogle Scholar
  63. Thompson JD et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  64. Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wu H et al (2010) Redefining CpG islands using hidden Markov Models. Biostatistics 11(3):499–514CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yan PS et al (2004) Methylation-specific oligonucleotide microarray. Methods Mol Biol 287:251–260PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ajit Kumar
    • 1
  • Gulshan Wadhwa
    • 2
  1. 1.Centre for BioinformaticsMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Biotechnology, Apex Bioinformatics CentreMinistry of Science & TechnologyNew DelhiIndia

Personalised recommendations