Advertisement

Three Dimensional Structures of Carbohydrates and Glycoinformatics: An Overview

  • K. VelurajaEmail author
  • J. Fermin Angelo Selvin
  • A. Jasmine
  • T. Hema Thanka Christlet
Chapter

Abstract

Carbohydrates are regarded as the interesting molecules of nature because of their structural diversity and functional characteristics. The nature of existence of carbohydrates in varied forms and conformations is crucial in understanding their functional features in living systems. The dynamical behavior of carbohydrates in free or bound state with other biological molecules influences their functional role in biological systems. In N- and O-glycosylation, sequence, structure, and conformation of carbohydrates play a vital role. Hence, necessity arises for the complete understanding of the three-dimensional structures of carbohydrates. One of the theoretical ways of studying the structural and conformational aspect of carbohydrates is by molecular dynamics simulation. Not only the structure and conformation but also the interaction of carbohydrates with its conjugated forms can be investigated. The resources for carbohydrates in the form of databases available are discussed. Sialic acid-containing oligosaccharides which have an important role in molecular recognition phenomena are attributed to their sequence, structure, and conformational diversity. A three-dimensional structural database for sialic acid-containing carbohydrates (3DSDSCAR) developed based on molecular dynamics simulation results is discussed in detail. Glycoinformatics, knowledge about carbohydrates or glycans, is still a field of informatics to be explored more.

Keywords

Glycoinformatics Carbohydrate database Molecular dynamics simulation 

Notes

Acknowledgments

Veluraja acknowledges the agencies DST, DBT, and DBT-India-AIST-Japan for funding his various research projects. JFA Selvin acknowledges DST for JRF, DBT for Research Assistantship, and CSIR for SRF. Jasmine acknowledges UGC-BSR for JRF and SRF. All the authors acknowledge the use of Bioinformatics Infrastructure Facility housed at Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu.

References

  1. Afferni C et al (1999) Role of carbohydrate moieties in IgE binding to allergenic components of Cupressus arizonica pollen extract. Clin Exp Allergy 29(8):1087–1094PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alder B, Wainwright T (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208CrossRefGoogle Scholar
  3. Atkins E et al (1974) X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid. Biochem J 141(3):919–921PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr (Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195(3):639–644PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berteau O, Stenutz R (2004) Web resources for the carbohydrate chemist. Carbohydr Res 339(5):929–936PubMedCrossRefPubMedCentralGoogle Scholar
  6. Biswas M, Rao V (1980) Conformational analysis of the milk oligosaccharides. Biopolymers 19(8):1555–1566PubMedCrossRefPubMedCentralGoogle Scholar
  7. Biswas M, Rao V (1982) Conformational studies on the ABH and Lewis blood group oligosaccharides. Carbohydr Polym 2(3):205–222CrossRefGoogle Scholar
  8. Bode L (2006) Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136(8):2127–2130PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bohne A et al (1998) W3-SWEET: carbohydrate modeling by internet. Mol Model Ann 4(1):33–43CrossRefGoogle Scholar
  10. Bourne Y, Cambillau C (1993) The role of structural water molecules in protein-saccharide complexes. Water and biological macromolecules. Springer, pp 321–337CrossRefGoogle Scholar
  11. Brady J (1986) Molecular dynamics simulations of. alpha.-D-glucose. J Am Chem Soc 108(26):8153–8160CrossRefGoogle Scholar
  12. Brady JW (1991) Theoretical studies of oligosaccharide structure and conformational dynamics. Curr Opin Struct Biol 1(5):711–715CrossRefGoogle Scholar
  13. Brocca P et al (2000) Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconj J 17(5):283–299PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brown EB et al (1975) Cell-surface carbohydrates and their interactions: I. NMR of N-acetyl neuraminic acid. Biochimic Biophys Acta (BBA)-Gen Subj 399(1):124–130CrossRefGoogle Scholar
  15. Bundle DR, Young NM (1992) Carbohydrate-protein interactions in antibodies and lectins. Curr Opin Struct Biol 2(5):666–673CrossRefGoogle Scholar
  16. Bush CA (1992) Experimental determination of the three-dimensional structure of oligosaccharides. Curr Opin Struct Biol 2(5):655–660CrossRefGoogle Scholar
  17. Cael JJ et al (1976) Polarized infrared spectra of crystalline glycosaminoglycans. Carbohydr Res 50(2):169–179PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cagas P, Bush CA (1990) Determination of the conformation of Lewis blood group oligosaccharides by simulation of two-dimensional nuclear overhauser data. Biopolymers 30(11–12):1123–1138PubMedCrossRefPubMedCentralGoogle Scholar
  19. Carver JP (1991) Experimental structure determination of oligosaccharides. Curr Opin Struct Biol 1(5):716–720CrossRefGoogle Scholar
  20. Christlet THT, Veluraja K (2001) Database analysis of O-glycosylation sites in proteins. Biophys J 80(2):952–960CrossRefGoogle Scholar
  21. Christlet THT et al (1999) A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences. Acta Crystallogr D Biol Crystallogr 55(8):1414–1420PubMedCrossRefPubMedCentralGoogle Scholar
  22. Crocker PR, Feizi T (1996) Carbohydrate recognition systems: functional triads in cell—cell interactions. Curr Opin Struct Biol 6(5):679–691PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cumming DA, Carver JP (1987) Virtual and solution conformations of oligosaccharides. Biochemistry 26(21):6664–6676PubMedCrossRefPubMedCentralGoogle Scholar
  24. Czarniecki MF, Thornton ER (1977) Carbon-13 nuclear magnetic resonance spin-lattice relaxation in the N-acylneuraminic acids. Probes for internal dynamics and conformational analysis. J Am Chem Soc 99(25):8273–8279CrossRefGoogle Scholar
  25. Doubet S et al (1989) The complex carbohydrate structure database. Trends Biochem Sci 14(12):475–477PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9(8):747–755PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gooley AA et al (1991) Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochem Biophys Res Commun 178(3):1194–1201PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hansen JE et al (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase. Biochem J 308(3):801–813PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hashimoto K et al (2006) KEGG as a glycome informatics resource. Glycobiology 16(5):63R–70RPubMedCrossRefPubMedCentralGoogle Scholar
  30. Hughes RC et al (1988) Substrate recognition by UDP-N-acetyl-α-d-galactosamine: polypeptide N-acetyl-α-d-galactosaminyltransferase. Effects of chain length and disulphide bonding of synthetic peptide substrates. Carbohydr Res 178(1):259–269PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hunt LT, Dayhoff MO (1970) The occurrence in proteins of the tripeptides Asn-X-Ser and Asn-X-Thr and of bound carbohydrate. Biochem Biophys Res Commun 39(4):757–765PubMedCrossRefPubMedCentralGoogle Scholar
  32. Imberty A (1997) Oligosaccharide structures: theory versus experiment. Curr Opin Struct Biol 7(5):617–623PubMedCrossRefPubMedCentralGoogle Scholar
  33. Imberty A, Pérez S (1995) Stereochemistry of the N-glycosylation sites in glycoproteins. Protein Eng 8(7):699–709PubMedCrossRefPubMedCentralGoogle Scholar
  34. Imberty A, Pérez S (2000) Structure, conformation, and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chem Rev 100(12):4567–4588PubMedCrossRefPubMedCentralGoogle Scholar
  35. Imperiali B (1997) Protein glycosylation: the clash of the titans. Acc Chem Res 30(11):452–459CrossRefGoogle Scholar
  36. Jarrell HC et al (1987) Determination of conformational properties of glycolipid head groups by deuterium NMR of oriented multibilayers. Biochemistry 26(7):1805–1811PubMedCrossRefPubMedCentralGoogle Scholar
  37. Karlsson KA (1995) Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol 5(5):622–635PubMedCrossRefPubMedCentralGoogle Scholar
  38. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652CrossRefGoogle Scholar
  39. Kelemen M, Rogers H (1971) Three-dimensional molecular models of bacterial cell wall mucopeptides (peptidoglycans). Proc Natl Acad Sci 68(5):992–996PubMedCrossRefPubMedCentralGoogle Scholar
  40. Klaić B, Domenick RL (1990) 1 Hn. mr studies of a natural immunoadjuvant peptidoglycan monomer: proposed structure in solution in methyl sulfoxide. Carbohydr Res 196:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lemieux R, Koto S (1974) The conformational properties of glycosidic linkages. Tetrahedron 30(13):1933–1944CrossRefGoogle Scholar
  42. Lis H, Sharon N (1993) Protein glycosylation. Eur J Biochem 218(1):1–27PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2):637–674PubMedCrossRefPubMedCentralGoogle Scholar
  44. Live DH et al (1999) Probing cell-surface architecture through synthesis: an NMR-determined structural motif for tumor-associated mucins. Proc Natl Acad Sci 96(7):3489–3493PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lonngren J (1989) Carbohydrates and the pharmaceutical industry. Pure Appl Chem 61(7):1313–1314CrossRefGoogle Scholar
  46. Lütteke T et al (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339(5):1015–1020PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lütteke T et al (2006) GLYCOSCIENCES. de: an internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71R–81RPubMedCrossRefPubMedCentralGoogle Scholar
  48. Marchal I et al (2003) Bioinformatics in glycobiology. Biochimie 85(1):75–81PubMedCrossRefPubMedCentralGoogle Scholar
  49. McCammon JA et al (1977) Dynamics of folded proteins. Nature 267(5612):585–590PubMedCrossRefPubMedCentralGoogle Scholar
  50. Moir A, Smith DA (1990) The genetics of bacterial spore germination. Ann Rev Microbiol 44(1):531–553CrossRefGoogle Scholar
  51. Moskalewski S, Jankowska-Steifer E (2011) Hydrostatic and boundary lubrication of joints – nature of boundary lubricant. Ortop Traumatol Rehabil 14(1):13–21CrossRefGoogle Scholar
  52. Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10(11):1147–1156PubMedCrossRefPubMedCentralGoogle Scholar
  53. Muramatsu T (2000) Protein-bound carbohydrates on cell-surface as targets of recognition: an odyssey in understanding them. Glycoconj J 17(7–9):577–595PubMedCrossRefPubMedCentralGoogle Scholar
  54. O’Connor SE, Imperiali B (1996) Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol 3(10):803–812PubMedCrossRefPubMedCentralGoogle Scholar
  55. O'Connell B et al (1991) The influence of flanking sequences on O-glycosylation. Biochem Biophys Res Commun 180(2):1024–1030PubMedCrossRefPubMedCentralGoogle Scholar
  56. Olofsson S, Bergström T (2005) Glycoconjugate glycans as viral receptors. Ann Med 37(3):154–172PubMedCrossRefPubMedCentralGoogle Scholar
  57. Pascher I, Sundell S (1977) Molecular arrangements in sphingolipids. The crystal structure of cerebroside. Chem Phys Lipids 20(3):175–191CrossRefGoogle Scholar
  58. Paulson JC (1989) Glycoproteins: what are the sugar chains for? Trends Biochem Sci 14(7):272–276PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pérez S, Marchessault RH (1978) The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr Res 65(1):114–120CrossRefGoogle Scholar
  60. Pérez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15(5):517–524PubMedCrossRefPubMedCentralGoogle Scholar
  61. Peters T, Pinto BM (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 6(5):710–720PubMedCrossRefPubMedCentralGoogle Scholar
  62. Petrescu AJ et al (1999) A statistical analysis of N-and O-glycan linkage conformations from crystallographic data. Glycobiology 9(4):343–352PubMedCrossRefPubMedCentralGoogle Scholar
  63. Poppe L et al (1992) The solution conformation of sialyl-α (2→ 6)-lactose studied by modern NMR techniques and Monte Carlo simulations. J Biomol NMR 2(2):109–136PubMedCrossRefPubMedCentralGoogle Scholar
  64. Poveda A, Jiménez-Barbero J (1998) NMR studies of carbohydrate–protein interactions in solution. Chem Soc Rev 27(2):133–144CrossRefGoogle Scholar
  65. Priyadarzini TR et al (2012) Molecular dynamics simulation and quantum mechanical calculations on α-D-N-acetylneuraminic acid. Carbohydr Res 351:93–97PubMedCrossRefPubMedCentralGoogle Scholar
  66. Quiocho FA (1989) Protein-carbohydrate interactions: basic molecular features. Pure Appl Chem 61(7):1293–1306CrossRefGoogle Scholar
  67. Rall S et al (1982) Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 257(8):4171–4178PubMedPubMedCentralGoogle Scholar
  68. Ranzinger R et al (2008) GlycomeDB–integration of open-access carbohydrate structure databases. BMC Bioinforma 9(1):1CrossRefGoogle Scholar
  69. Rao VR (1998) Conformation of carbohydrates. CRC Press, Boca RatonGoogle Scholar
  70. Rao V, Biswas M (1981) Conformations and interactions of blood-group oligosaccharides. Biochem Soc Trans 9(6):508–510PubMedCrossRefPubMedCentralGoogle Scholar
  71. Revelle BM et al (1996) Structure-function analysis of P-selectin-Sialyl Lewis binding interactions mutagenic alteration of ligand binding specificity. J Biol Chem 271(8):4289–4297PubMedCrossRefPubMedCentralGoogle Scholar
  72. Rice KG et al (1993) Experimental determination of oligosaccharide three-dimensional structure. Curr Opin Struct Biol 3(5):669–674CrossRefGoogle Scholar
  73. Roy R (1996) Syntheses and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 6(5):692–702PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sawada T et al (2006) Conformational study of α-N-acetyl-D-neuraminic acid by density functional theory. J Carbohydr Chem 25(5):387–405CrossRefGoogle Scholar
  75. Schauer R, Kamerling JP (1995) Chemistry, biochemistry and biology of sialic acids. New Compr Biochem 29:243–402CrossRefGoogle Scholar
  76. Sharmila DJS, Veluraja K (2004a) Disialogangliosides and their interaction with cholera toxin—investigation by molecular modeling, molecular mechanics and molecular dynamics. J Biomol Struct Dyn 22(3):299–313CrossRefGoogle Scholar
  77. Sharmila DJS, Veluraja K (2004b) Monosialogangliosides and their interaction with cholera toxin—investigation by molecular modeling and molecular mechanics. J Biomol Struct Dyn 21(4):591–613PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sharmila DJS, Veluraja K (2006) Conformations of higher gangliosides and their binding with cholera toxin-investigation by molecular modeling, molecular mechanics, and molecular dynamics. J Biomol Struct Dyn 23(6):641–656PubMedCrossRefPubMedCentralGoogle Scholar
  79. Simanek EE et al (1998) Selectin-carbohydrate interactions: from natural ligands to designed mimics. Chem Rev 98(2):833–862PubMedCrossRefPubMedCentralGoogle Scholar
  80. Suresh MX, Veluraja K (2003) Conformations of terminal sialyloligosaccharide fragments—a molecular dynamics study. J Theor Biol 222(3):389–402PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tipper DJ (1970) Structure and function of peptidoglycans. Int J Syst Evol Microbiol 20(4):361–377Google Scholar
  82. Toone EJ (1994) Structure and energetics of protein-carbohydrate complexes. Curr Opin Struct Biol 4(5):719–728CrossRefGoogle Scholar
  83. Van Halbeek H (1994) NMR developments in structural studies of carbohydrates and their complexes. Curr Opin Struct Biol 4(5):697–709CrossRefGoogle Scholar
  84. van Kuik JA et al (1992) A 1H NMR database computer program for the analysis of the primary structure of complex carbohydrates. Carbohydr Res 235:53–68PubMedCrossRefPubMedCentralGoogle Scholar
  85. Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8(1):34–40PubMedCrossRefPubMedCentralGoogle Scholar
  86. Varki A, Freeze HH (2009) Glycans in acquired human diseases (Chapter 43), Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  87. Vasudevan SV, Balaji PV (2001) Dynamics of ganglioside headgroup in lipid environment: molecular dynamics simulations of GM1 embedded in dodecylphosphocholine micelle. J Phys Chem B 105(29):7033–7041CrossRefGoogle Scholar
  88. Vasudevan SV, Balaji PV (2002) Comparative analysis of ganglioside conformations by MD simulations: implications for specific recognition by proteins. J Mol Struct THEOCHEM 583(1):215–232CrossRefGoogle Scholar
  89. Veluraja K, Margulis CJ (2005) Conformational dynamics of sialyl lewisx in aqueous solution and its interaction with selectine. A study by molecular dynamics. J Biomol Struct Dyn 23(1):101–111PubMedCrossRefPubMedCentralGoogle Scholar
  90. Veluraja K, Rao V (1980) Theoretical studies on the conformation of β-DN-acetyl neuraminic acid (sialic acid). Biochim Biophys Acta (BBA)-Gen Subj 630(3):442–446CrossRefGoogle Scholar
  91. Veluraja K, Rao V (1983) Theoretical studies on the conformation of monosialogangliosides and disialogangliosides. Carbohydr Polym 3(3):175–192CrossRefGoogle Scholar
  92. Veluraja K, Rao V (1984a) Studies on the conformations of sialyloligosaccharides and implications. J Biosci 6(5):625–634CrossRefGoogle Scholar
  93. Veluraja K, Rao V (1984b) Theoretical studies on the conformations of higher gangliosides. Carbohydr Polym 4(5):357–375CrossRefGoogle Scholar
  94. Veluraja K, Seethalakshmi AN (2008) Dynamics of sialyl Lewis a in aqueous solution and prediction of the structure of the sialyl Lewis a–selectinE complex. J Theor Biol 252(1):15–23PubMedCrossRefPubMedCentralGoogle Scholar
  95. Veluraja K et al (2001) Molecular modeling of sialyloligosaccharide fragments into the active site of influenza virus N9 neuraminidase. J Biomol Struct Dyn 19(1):33–45PubMedCrossRefPubMedCentralGoogle Scholar
  96. Veluraja K et al (2010) 3DSDSCAR-a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation. Carbohydr Res 345(14):2030–2037PubMedCrossRefPubMedCentralGoogle Scholar
  97. von der Lieth CW et al (2002) Molecular dynamics simulations of glycoclusters and glycodendrimers. Rev Mol Biotechnol 90(3):311–337CrossRefGoogle Scholar
  98. von der Lieth CW et al. (2009) Bioinformatics for glycobiology and glycomics: an introduction. Wiley Online LibraryGoogle Scholar
  99. Vyas N et al (1991) Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and functional similarity. J Biol Chem 266(8):5226–5237PubMedPubMedCentralGoogle Scholar
  100. Werz DB, Seeberger PH (2005) Carbohydrates as the next frontier in pharmaceutical research. Chem Eur J 11(11):3194–3206PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wilson J, Itzstein M (2003) Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4(5):389–408PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wilson I et al (1991) Amino acid distributions around O-linked glycosylation sites. Biochem J 275(2):529–534PubMedPubMedCentralCrossRefGoogle Scholar
  103. Woods RJ (1995) Three-dimensional structures of oligosaccharides. Curr Opin Struct Biol 5(5):591–598PubMedCrossRefPubMedCentralGoogle Scholar
  104. Woods RJ (1998) Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconj J 15(3):209–216PubMedPubMedCentralCrossRefGoogle Scholar
  105. WoodsGroup (2005–2010) GLYCAM Web, from http://www.glycam.com
  106. Wormald MR et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102(2):371–386PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wu WG et al (1999) Structural study on O-glycopeptides: glycosylation-induced conformational changes of O-GlcNAc, O-LacNAc, O-sialyl-LacNAc, and O-sialyl-lewis-X peptides of the mucin domain of MAdCAM-1. J Am Chem Soc 121(11):2409–2417CrossRefGoogle Scholar
  108. Wyss DF et al (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269(5228):1273PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yan ZY, Bush CA (1990) Molecular dynamics simulations and the conformational mobility of blood group oligosaccharides. Biopolymers 29(4–5):799–811PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yoshida A et al (1997) Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 272(27):16884–16888PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. Veluraja
    • 1
    Email author
  • J. Fermin Angelo Selvin
    • 2
  • A. Jasmine
    • 3
  • T. Hema Thanka Christlet
    • 4
  1. 1.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Department of PhysicsNadar Mahajana Sangam S. Vellaichamy Nadar CollegeMaduraiIndia
  3. 3.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia
  4. 4.Department of PhysicsDr. Ambedkar Government Arts CollegeChennaiIndia

Personalised recommendations