Advertisement

Role of Bioinformatics in Drug Resistance Prediction for HIV/AIDS

  • Jayakanthan Mannu
  • Premendu P. Mathur
Chapter

Abstract

The successful treatment of human immunodeficiency virus (HIV) infection is majorly affected by development of viral drug resistance. This complicates physician to choose the right choice of drugs. In such a scenario, a series of bioinformatics software tools and databases have been developed for predicting drug resistance, and responses to combination therapy from viral genotype have been developed to support physician. In this paper, we provided an up-to-date review on current treatment options, exploring the potential of novel targets and developed computational tools and databases for current HIV therapy in viral drug resistance.

Keywords

Combination therapy Drug resistance HAART HIV databases Genotypic resistance testing Phenotypic resistance testing 

Notes

Acknowledgments

J.M. is supported by BTIS scheme of Department of Biotechnology (DBT), Government of India, New Delhi, India.

References

  1. Beerenwinkel N et al (2003) Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 31(13):3850–3855CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beerenwinkel N et al (2005) Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics 21(21):3943–3950CrossRefPubMedGoogle Scholar
  3. Berger EA et al (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700CrossRefPubMedGoogle Scholar
  4. Brik A, Wong CH (2003) HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 1(1):5–14CrossRefGoogle Scholar
  5. Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215CrossRefPubMedGoogle Scholar
  6. Dimitrov DS et al (1998) HIV coreceptors. J Membr Biol 166(2):75–90CrossRefPubMedGoogle Scholar
  7. Dunn DT et al (2011) Genotypic resistance testing in routine clinical care. Curr Opin HIV AIDS 6(4):251–257CrossRefPubMedGoogle Scholar
  8. Flexner C (2007) HIV drug development: the next 25 years. Nat Rev Drug Discov 6(12):959–966CrossRefPubMedGoogle Scholar
  9. Gange SJ et al (2002) Effectiveness of highly active antiretroviral therapy among HIV-1 infected women. J Epidemiol Community Health 56(2):153–159CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kohl NE et al (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85(13):4686–4690CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kozal MJ (2009) Drug-resistant human immunodeficiency virus. Clin Microbiol Infect 15(Suppl 1):69–73CrossRefPubMedGoogle Scholar
  12. Kuiken C et al (2003) HIV sequence databases. AIDS Rev 5(1):52–61PubMedPubMedCentralGoogle Scholar
  13. Lambert DM et al (1992) Human immunodeficiency virus type 1 protease inhibitors irreversibly block infectivity of purified virions from chronically infected cells. Antimicrob Agents Chemother 36(5):982–988CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lengauer T, Sing T (2006) Bioinformatics-assisted anti-HIV therapy. Nat Rev Microbiol 4(10):790–797CrossRefPubMedGoogle Scholar
  15. MacArthur RD (2009) Understanding HIV phenotypic resistance testing: usefulness in managing treatment-experienced patients. AIDS Rev 11(4):223–230PubMedGoogle Scholar
  16. Rhee SY et al (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31(1):298–303CrossRefPubMedPubMedCentralGoogle Scholar
  17. Rose JR et al (1995) Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol 69(5):2751–2758PubMedPubMedCentralGoogle Scholar
  18. Shafer RW (2006) Rationale and uses of a public HIV drug-resistance database. J Infect Dis 194(Suppl 1):S51–S58CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sluis-Cremer N et al (2015) Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol 10(11):1773–1782CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sterne JA et al (2005) Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort study. Lancet 366(9483):378–384CrossRefPubMedGoogle Scholar
  21. Terwilliger EF et al (1990) Mechanisms of infectivity and replication of HIV-1 and implications for therapy. Ann Emerg Med 19(3):233–241CrossRefPubMedGoogle Scholar
  22. Vandamme AM et al (1999) Managing resistance to anti-HIV drugs: an important consideration for effective disease management. Drugs 57(3):337–361CrossRefPubMedGoogle Scholar
  23. Zazzi M et al (2004) Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype. J Antimicrob Chemother 53(2):356–360CrossRefPubMedGoogle Scholar
  24. Zeldin RK, Petruschke RA (2004) Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 53(1):4–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jayakanthan Mannu
    • 1
  • Premendu P. Mathur
    • 2
  1. 1.Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and BiotechnologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  2. 2.Department of Biochemistry and Molecular Biology, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations