Advertisement

Cross Talk Between Phytohormone Signaling Pathways Under Abiotic Stress Conditions and Their Metabolic Engineering for Conferring Abiotic Stress Tolerance

  • Sheezan Rasool
  • Uneeb Urwat
  • Muslima Nazir
  • Sajad Majeed Zargar
  • M. Y. Zargar
Chapter

Abstract

The environmental stresses, both biotic and abiotic, reduce crop harvests dramatically. However, abiotic stresses are responsible for the lion’s share of harvest losses. We really need to devise strategies to prevent crop losses, so that we could meet the food demands of ever-growing human population. So, the need of the hour is to identify and understand the mechanisms deployed by plants to counteract abiotic stresses. Plants perceive and react to environmental stresses in a highly coordinated and interactive manner. Being sessile, plasticity enables them to adapt to harsh changing environmental conditions, mediated by elaborate signaling networks. The perception of abiotic stress triggers the activation of signal transduction cascades that interact with the baseline pathways transduced by phytohormones. The convergence points among hormone signal transduction cascades are considered cross talk, and together they form a signaling network. Through this mechanism, hormones interact by activating either a common second messenger or through a phosphorylation cascade. This chapter reviews the possible roles of phytohormones in abiotic stress tolerance and cross talk between phytohormone signaling and also about the metabolic engineering of phytohormones for conferring abiotic stress tolerance on crop plants which can prove an excellent target to prevent crop losses and mitigate the problem of feeding to increasing human population.

Keywords

Abiotic stress Phytohormones Signal transduction Metabolic engineering 

References

  1. Abou Qamar S, Luo H, Laluk K, Mickelbart VM, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by AIM1 transcription factor. Plant J 58:1–13.14CrossRefGoogle Scholar
  2. Acharya B, Assmann S (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462PubMedCrossRefGoogle Scholar
  3. Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340PubMedCrossRefGoogle Scholar
  5. Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113PubMedCrossRefGoogle Scholar
  6. Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metal stress. Environ Exp Bot 68:175–179CrossRefGoogle Scholar
  7. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bowler C, Fluhr R (2000) The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246PubMedCrossRefGoogle Scholar
  9. Capiati DA, Pais SM, Tellez-Iñon MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signaling. J Exp Bot 57:2391–2400PubMedCrossRefGoogle Scholar
  10. Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389Google Scholar
  11. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefGoogle Scholar
  12. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75PubMedCrossRefGoogle Scholar
  13. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92:4114–4119PubMedPubMedCentralCrossRefGoogle Scholar
  14. Divi U, Krishna P (2009) Brassinosteriod: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136CrossRefGoogle Scholar
  15. Divi U, Krishna P (2010) Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds 0vercomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul 29:385–393CrossRefGoogle Scholar
  16. Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151PubMedPubMedCentralCrossRefGoogle Scholar
  17. Du H, Wu N, Cui F, You L, Li XH, Xiong LZ (2014) A homolog of ETHYLENE OVER-PRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J 78:834–849PubMedCrossRefGoogle Scholar
  18. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  19. Ellouz H, Hamed KB, Hernandez I, Cela J, Muller M, Magne C et al (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317. https://doi.org/10.1007/s00425-014-2154-7 CrossRefGoogle Scholar
  20. Estrada-Melo AC, Ma C, Reid MS, Jiang CZ (2015) Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Hortic Res 2:15013. https://doi.org/10.1038/hortres.2015.13 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Etehadnia M, Waterer DR, Tanino KK (2008) The method of ABA application affects salt stress responses in resistant and sensitive potato lines. J Plant Growth Regul 27:331–341. https://doi.org/10.1007/s00344-008-9060-9 CrossRefGoogle Scholar
  22. Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438Google Scholar
  23. Feng Y, Yin YH, Fei SZ (2015) Downregulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Sci 234:163–173PubMedCrossRefGoogle Scholar
  24. Fletcher RA, Gill A, Davis TD, Sankhla N (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138Google Scholar
  25. Flores A, Grau A, Laurich F, Dorffling K (1988) Effect of new terpenoid analogues of abscisic acid on chilling and freezing resistance. J Plant Physiol 132:362–369. https://doi.org/10.1016/S0176-1617(88)80121-4 CrossRefGoogle Scholar
  26. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081PubMedCrossRefGoogle Scholar
  27. Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) In: Shanker A (ed) Abiotic and biotic stress response crosstalk in plants-physiological, biochemical and genetic perspectives. InTech Open Access Company, Rijeka, pp 1–26Google Scholar
  28. Fujita M, Fijita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442.19PubMedCrossRefGoogle Scholar
  29. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525. https://doi.org/10.1007/s10265-011-0412-3 PubMedCrossRefGoogle Scholar
  30. Gan S, Amasino RM (1995) Inhibition of leaf senescence by auto-regulated production of cytokinin. Science 270:1986–1988PubMedCrossRefGoogle Scholar
  31. Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC et al (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato. J Exp Bot 62:125–140PubMedCrossRefGoogle Scholar
  32. Gilley A, Flecher RA (2007) Gibberellin antagonizes paclobutrazol induced stress protection in wheat seedlings. J Plant Physiol 103:200–207Google Scholar
  33. Gomez-Rolden V, Fermas S, Brewer PB, Puech-Pages V, Adun E, Pillot J, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194CrossRefGoogle Scholar
  34. Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J Exp Bot 55:111–118PubMedCrossRefGoogle Scholar
  35. Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion Perdigones A, Fernandez MA et al (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:4451–4464. https://doi.org/10.1093/jxb/ eru219 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978. https://doi.org/10.1038/srep24978 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Habben JE, Bao XM, Bate NJ, De Bruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K, Schussler JR (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693PubMedCrossRefGoogle Scholar
  38. Iqbal N, Nazar R, Iqbal MRK, Masood A, Nafees AK (2011) Role of gibberellins in regulation of source sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007Google Scholar
  39. Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734Google Scholar
  40. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler C, Abbott AG, Hall TC (eds) Transgenic crop plants, Vol. 2: utilization and biosafety. Springer-Verlag, Berlin, pp 67–131CrossRefGoogle Scholar
  41. Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5:296–303Google Scholar
  43. Jung H, Lee DK, Choi DY, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312PubMedCrossRefGoogle Scholar
  44. Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282CrossRefGoogle Scholar
  45. Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent path ways in the dehydration response of Arabidopsis thaliana. J Plant Physiol 169:1382–1391PubMedCrossRefGoogle Scholar
  46. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gsti E, Wininger S, Bhattarcharya C, Sejalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216PubMedCrossRefGoogle Scholar
  47. Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229PubMedCrossRefGoogle Scholar
  49. Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119. https://doi.org/10.1007/s00344-005-0004-3 CrossRefGoogle Scholar
  50. Khan W, Prithiviraj B, Smith D (2003) Photosynthetic response of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492PubMedCrossRefGoogle Scholar
  51. Khodary SEA (2004) Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8Google Scholar
  52. Khripach V, Zhabinskii VN, De Groot AE (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447CrossRefGoogle Scholar
  53. Kim IJ, Baek D, Park HC, Chun HJ, Oh DH, Lee MK, Cha JY, Kim WY, Kim MC, Chung WS, Bohnert HJ (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6:337–349PubMedCrossRefGoogle Scholar
  54. Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factors Sl-ERFB3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J 2014:1–12CrossRefGoogle Scholar
  55. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:1158–1164CrossRefGoogle Scholar
  56. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297PubMedCrossRefGoogle Scholar
  57. Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182PubMedCrossRefGoogle Scholar
  58. Lalk I, Dörffling K (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292. https://doi.org/10.1111/j.1399-3054.1985.tb04267.x CrossRefGoogle Scholar
  59. Laloi C, Appel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328PubMedCrossRefGoogle Scholar
  60. Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostisstolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413PubMedCrossRefGoogle Scholar
  61. Larkindale J, Hall DJ, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo-tolerance. Plant Physiol 138:882–897PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li FL, Asami T, Wu XZ, Tsang EWT, Cutler AJ (2007a) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li KR, Wang HH, Han G, Wang QJ, Fan J (2007b) Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water stress. New For 35:255–266CrossRefGoogle Scholar
  64. Li YJ, Zhang JC, Zhang J, Hao L, Hua JP, Duan LS, Zhang MC, Li ZH (2013) Expression of an Arabidopsis molybdenum factor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11:747–758PubMedCrossRefGoogle Scholar
  65. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C et al (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354PubMedCrossRefGoogle Scholar
  66. Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Li Z (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.) PLoS One 8:e52126. https://doi.org/10.1371/journal.pone.0052126 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Luo M, Liu JH, Mahapatra S, Hiu RD, Hill RD, Mahapatra SS (1992) Characterization of a gene family encoding abscisic acid and environmental stress-inducible proteins of alfalfa. J Biol Chem 267:15367–15374PubMedGoogle Scholar
  68. Ma Q-H (2008) Genetic engineering of cytokinins and their application to agriculture. Crit Rev Biotechnol 28:213–232PubMedCrossRefGoogle Scholar
  69. Mao X, Zhang H, Tian S, Chang X, Jing R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696PubMedCrossRefGoogle Scholar
  70. Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465PubMedCrossRefGoogle Scholar
  71. Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, Lemcoff JH, Kapulnik Y, Koltai H (2010) Strigolactones are positive regulators of light-harvesting genes in tomato. J Exp Bot 61:3129–3136PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mei C, Qi M, Sheng G, Yang Y (2006) Inducible over expression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact 19:1127–1137PubMedCrossRefGoogle Scholar
  73. Mohapatra SS, Poole RJ, Dhindsa RS (1988) Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol 87:468–473. https://doi.org/10.1104/pp.87.2.468 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x CrossRefGoogle Scholar
  75. Nishiyama R, Watanabe Y, Fujita Y, Tien LD, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmuelling T, Lam-Son PT (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183PubMedPubMedCentralCrossRefGoogle Scholar
  76. O’Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce change in endogenous Jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul l52:111–116CrossRefGoogle Scholar
  78. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increases grain yield in rice under water-stress. Plant Biotechnol. https://doi.org/10.1111/ j.1467-7652.2010.00584.x. in press
  79. Pospíšilová H, Jiskrová E, Vojta P, Mrízová K, Kokáš F, Čudejková MM, Bergougnoux V, Plíhal O, Klimešová J, Novák O, Dzurová L (2016) Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol 33:692–705. https://doi.org/10.1016/j.nbt.2015.12.005 CrossRefGoogle Scholar
  80. Qin F, Kazuo S, Kazuo YS (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582PubMedCrossRefGoogle Scholar
  81. Qiu WM, Liu MY, Qiao GR, Jiang J, Xie LH, Zhuo RY (2012) An isopentenyl transferase gene driven by the stress-inducible rd29A promoter improves salinity stress tolerance in transgenic tobacco. Plant Mol Biol Report 30:519–528CrossRefGoogle Scholar
  82. Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH (2014) Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol J 12:903–913PubMedCrossRefGoogle Scholar
  83. Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress- induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ribeiro DM, Desikan R, Bright JO, Confraria ANA, Harrison J, Hancock JT, Barros RS, Neill SJ, Wilson ID (2009) Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves. Plant Cell Environ 32:46–57PubMedCrossRefGoogle Scholar
  85. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK<IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941PubMedCrossRefGoogle Scholar
  88. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. https://doi.org/10.3389/fpls.2016.00571 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishana P (2016) Overexpression of brassinosteroid biosynthesis gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298. https://doi.org/10.1038/srep28298 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sakamoto T, Yoichi M, Kanako I, Masatomo K, Hironori I, Toshiaki K, Shuichi I, Makoto M, Hiroshi T (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913PubMedCrossRefGoogle Scholar
  91. Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040PubMedPubMedCentralCrossRefGoogle Scholar
  92. Senaratna T, Touchell D, Bumm E, Dixon K (2000) Acetylsalicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161CrossRefGoogle Scholar
  93. Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol 169:266–282PubMedPubMedCentralCrossRefGoogle Scholar
  94. Singh N, La Rosa K, Handa PC, Hasegawa AKPM, Bressan RA (1987) Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc Natl Acad Sci U S A 84:739–743. https://doi.org/10.1073/pnas.84.3.739 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD et al (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9. https://doi.org/10.1016/S0168-9452(99) 00247-2 PubMedCrossRefGoogle Scholar
  96. Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol 91:808–811PubMedPubMedCentralCrossRefGoogle Scholar
  97. Soto MJ, Fernandez-Aparicio MN, Castellanos-Morales V, Garcia-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385CrossRefGoogle Scholar
  98. Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J 64:6489–6603CrossRefGoogle Scholar
  99. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270.36PubMedCrossRefGoogle Scholar
  100. Szalai G, Tari I, Janda T, Pestenacz A, Paldi E (2002) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant 43:637–640CrossRefGoogle Scholar
  101. Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236CrossRefGoogle Scholar
  102. Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR et al (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tian X, Wang Z, Li X, Lv T, Liu H, Wang L et al (2015) Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8:28. https://doi.org/10.1186/s12284-015-0061-6 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino cyclopropane-1- carboxylate synthase gene family members. Plant Physiol 136:2982–3000PubMedPubMedCentralCrossRefGoogle Scholar
  105. Umehara M, Hanada A, Yoshid S, Akiyam K, Arite T, Takeda N, Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  106. Vob U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319CrossRefGoogle Scholar
  107. Vurro M, Yoneyama K (2012) Strigolactones-intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. Pest Manag Sci 68:664–668PubMedCrossRefGoogle Scholar
  108. Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622.201PubMedCrossRefGoogle Scholar
  109. Wallace JS, Acreman MC, Sullivan CA (2003) The sharing of water between society and ecosystems: from conflict to catchment–based co– management. Philos Trans R Soc B Biol Sci 358:2011–2026. https://doi.org/10.1098/rstb.2003.1383 CrossRefGoogle Scholar
  110. Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424PubMedCrossRefGoogle Scholar
  111. Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C et al (2009a) Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Mol Plant 2:191–200. https://doi.org/10.1093/mp/ssn088 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang L, Wang Z, Xu Y, Joo S-H, Kim S-K, Xue Z, Xu Z, Wang Z, Chong K (2009b) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498–510PubMedCrossRefGoogle Scholar
  113. Wang XH, Shu C, Li HY, Hu XQ, Wang YX (2014) Effects of 0.01% brassinolide solution application on yield of rice and its resistance to autumn low-temperature damage. Acta Agric Jiangxi 26:36–38. in Chinese with English abstractGoogle Scholar
  114. Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R et al (2016) Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. J Exp Bot 67:421–434. https://doi.org/10.1093/jxb/erv477 PubMedCrossRefGoogle Scholar
  115. Wan-Hong C, Jun L, Xin-Jian H, Rui-Ling M, Hua-Lin Z, Shou-Yi C, Jin-Song Z (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719Google Scholar
  116. Wani SH, Singh NB, Haribhushan A, Mir JA (2013) Compatible solute engineering in plants for abiotic stress tolerance- the role of glycine betaine. Curr Genomics 14:157–165PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels ABA and abiotic stress tolerance of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458. https://doi.org/10.3389/fpls.2015.00458 PubMedPubMedCentralGoogle Scholar
  118. Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmulling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513. https://doi.org/10.1126/science.1239402 PubMedCrossRefGoogle Scholar
  120. Wilkinson S, Davies WJ (2010) Drought ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525PubMedCrossRefGoogle Scholar
  121. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  123. Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174PubMedGoogle Scholar
  124. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009 PubMedCrossRefGoogle Scholar
  125. Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2013) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31:97–117PubMedCrossRefGoogle Scholar
  126. Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815CrossRefGoogle Scholar
  127. Zhang Y, Yang J, Lu S, Cai J, Guo Z (2008) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158CrossRefGoogle Scholar
  128. Zhang S-W, Li C-H, Cao J, Zhang Y-C, Zhang S-Q, Xia Y-F, Sun D-Y, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-Acetic Acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang ZJ, Li F, Li DJ, Zhang HW, Huang RF (2010) Expre ssion of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774Google Scholar
  130. Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J et al (2012) The putative auxin effl ux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72:805–816PubMedCrossRefGoogle Scholar
  131. Zhang ZQ, Wang YF, Chang LQ, Zhang T, An J, Liu YS, Cao YM, Zhao X, Sha XY, Hu TM, Yang PZ, Zep MS (2015) A novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa),confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep 14:1–5Google Scholar
  132. Zhang J, Yu HY, Zhang YS, Wang YB, Li MY, Zhang JC, Duan LS, Zhang MC, Li ZH (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67:1339–1355. 528. https://doi.org/10.1093/jxb/erv528 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273CrossRefGoogle Scholar
  134. Žižková E, Dobrev PI, Muhovski Y, Hošek P, Hoyerová K, Haisel D, Hichri I (2015) Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol 15:85. https://doi.org/10.1186/s12870-015-0415-7 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sheezan Rasool
    • 1
  • Uneeb Urwat
    • 1
  • Muslima Nazir
    • 1
  • Sajad Majeed Zargar
    • 1
  • M. Y. Zargar
    • 2
  1. 1.Division of Plant BiotechnologySher-e-Kashmir University of Agricultural Sciences & Technology of KashmirSrinagarIndia
  2. 2.Sher-e-Kashmir University of Agricultural Sciences & Technology of KashmirSrinagarIndia

Personalised recommendations