Advertisement

Sustainable Management of Invasive Cassava Pests in Vietnam, Cambodia, and Thailand

  • Hiroki Tokunaga
  • Tamon Baba
  • Manabu Ishitani
  • Kasumi Ito
  • Ok-Kyung Kim
  • Ham Le Huy 
  • Hoang Khac Le
  • Kensaku Maejima
  • Shigeto Namba
  • Keiko T. Natsuaki
  • Dong Nguyen Van 
  • Hy Huu Nguyen
  • Nien Chau Nguyen
  • Anh Vu Nguyen 
  • Hisako Nomura
  • Motoaki Seki
  • Pao Srean
  • Hirotaka Tanaka
  • Bunna Touch
  • Hoat Xuan Trinh
  • Masashi Ugaki
  • Ayaka Uke
  • Yoshinori Utsumi
  • Prapit Wongtiem
  • Keiji Takasu
Chapter

Abstract

Cassava is an important crop, in which root tubers have been known as a staple food in tropical area. Recently, cassava tubers are processed by various methods into numerous products and utilized in various ways. The land area of cassava cultivation has been increasing especially in Southeast Asia. Such a situation is causing an introduction of new cassava diseases and insect pests in the region. In the main part of this chapter, we reviewed the current cassava situation in Vietnam, Cambodia, and Thailand and then illustrated the major cassava diseases and insect pests and their management methods. In addition, we described the international activities developing the cassava agriculture to date, the existing agricultural extension system, and the socioeconomic situation of cassava farmers. Since 2016, we have been conducting SATREPS project to establish a management of invasive cassava diseases and insect pests. At last part chapter, we showed our approach to establish the sustainable agriculture of cassava.

References

  1. Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8(8):1288–1291.  https://doi.org/10.1016/j.molp.2015.02.011 CrossRefPubMedGoogle Scholar
  2. Aloyce RC, Tairo F, Sseruwagi P, Rey ME, Ndunguru J (2013) A single-tube duplex and multiplex PCR for simultaneous detection of four cassava mosaic begomovirus species in cassava plants. J Virol Methods 189(1):148–156.  https://doi.org/10.1016/j.jviromet.2012.10.007 CrossRefPubMedGoogle Scholar
  3. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cardenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520.  https://doi.org/10.1105/tpc.16.00196 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez E, Pardo JM (2014) First report of hypovirulence between a reovirus and phytoplasma 16SrIII-L associated with frogskin disease of cassava (Manihot esculenta Crantz). Phytopathology 104:7–7.  https://doi.org/10.1094/PHYTO-104-11-S3.1 CrossRefGoogle Scholar
  5. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis 93:1139–1145CrossRefGoogle Scholar
  6. Alvarez E, Pardo JM, Mejia JF, Bertaccini A, Thanh ND, Hoat TX (2013) Detection and identification of ‘Candidatus Phytoplasma asteris’-related phytoplasmas associated with a witches’ broom disease of cassava in Vietnam. Phytopathogenic Mollicutes 3:77–81CrossRefGoogle Scholar
  7. Alvarez E, Pardo JM, Truke MJ (2014a) Detection and identification of ‘Candidatus Phytoplasma asteris’-related phytoplasma associated with a witches’ broom disease of cassava in Cambodia. Phytopathology 104:7–7.  https://doi.org/10.1094/PHYTO-104-11-S3.1 CrossRefGoogle Scholar
  8. Alvarez E, Pardo JM, Dufour D, Moreno JL, Alvarez E (2014b) The metabolism of carbohydrates in roots of cassava (Manihot esculenta Crantz) infected with frogskin disease. Phytopathology 104:7–7.  https://doi.org/10.1094/PHYTO-104-11-S3.1 CrossRefGoogle Scholar
  9. Alves AAC (2002) Cassava: biology, production and utilization. Chapter 5 Cassava botany and physiology, pp 1–16Google Scholar
  10. Arocha Y, Piñol B, Almeida R, Acosta K, Quiñones M, Zayas T, Varela M, Marrero Y, Boa E, Lucas JA (2009a) First report of phytoplasmas affecting organoponic crops in central and eastern Cuba. Plant Pathol 58:793–793CrossRefGoogle Scholar
  11. Arocha Y, Echoduc R, Talengerac D, Muhangic J, Rockefellerc E, Asherc O, Nakacwac R, Seruggac R, Gumisirizad G, Tripathid J, Kabuyee D, Otipaf M, Vutsemeg K, Lukandag M, Boa E (2009b) Occurrence of ‘Candidatus Phytoplasma aurantifolia’ (16SrII group) in cassava and four other species in Uganda. Plant Pathol 58:390–390CrossRefGoogle Scholar
  12. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131.  https://doi.org/10.1016/j.tibtech.2014.11.008 CrossRefPubMedGoogle Scholar
  13. Calle F, Morante N, Salazar S, Hershey C, Ceballos H (2016) Agronomic performance of new plant type cassava planted at high density. Third scientific conference of the Global Cassava Partnership for the 21st. Poster presentation SP11-09, Nanning, ChinaGoogle Scholar
  14. Calvert LA, Cuervo M, Lozano I, Villareal N, Arroyave J (2008) Identification of three strains of a virus associated with cassava plants affected by frogskin disease. J Phytopathol 156:647–653CrossRefGoogle Scholar
  15. Carvajal-Yepes M, Olaya C, Lozano I, Cuervo M, Castaño M, Cuellar WJ (2014) Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Res 186:76–86CrossRefPubMedGoogle Scholar
  16. Chov E, Touch B (2016) Assessment of economic losses of cassava production. University of Battambang, BattambangGoogle Scholar
  17. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19.  https://doi.org/10.1146/annurev-ento-112408-085504 CrossRefPubMedGoogle Scholar
  18. De Santis L (1964) Encírtidos de la República Argentina (Hymenoptera: Chalcidoidea)//Anales de la Comisión de Investigación Científica Provincia de Buenos Aires Gober nación, vol 4, pp 9–442Google Scholar
  19. de Souza AN, da Silva FN, Bedendo IP, Carvalho CM (2014) A Phytoplasma belonging to a 16SrIII-A subgroup and dsRNA virus associated with Cassava Frogskin disease in Brazil. Plant Dis 98:771–779.  https://doi.org/10.1094/pdis-04-13-0440-re CrossRefGoogle Scholar
  20. Duraisamy R, Natesan S, Muthurajan R, Gandhi K, Lakshmanan P, Karuppusamy N, Chokkappan M (2012) Molecular studies on the transmission of Indian Cassava Mosaic Virus (ICMV) and Sri Lankan Cassava Mosaic Virus (SLCMV) in cassava by Bemisia tabaci and Cloning of ICMV and SLCMV Replicase Gene from Cassava. Mol Biotechnol 53:150–158.  https://doi.org/10.1007/s12033-012-9503-1 CrossRefGoogle Scholar
  21. Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47.  https://doi.org/10.1093/pcp/pcu154 CrossRefPubMedGoogle Scholar
  22. Flôres D, Haas IC, Canale MC, Bedendo IP (2013) Molecular identification of a 16SrIII-B phytoplasma associated with cassava witches’ broom disease. Eur J Plant Pathol 137:237–242.  https://doi.org/10.1007/s10658-013-0250-3 CrossRefGoogle Scholar
  23. Food and Agriculture Organization of the United Nations (2013a) http://faostat3.fao.org/home/E
  24. Food and Agriculture Organization of the United Nations (2013b) Save and grow: cassava a guide to sustainable production intensificationGoogle Scholar
  25. Food and Agriculture Organization of the United Nations (2013c) Back-to-office report cum report of final meeting of FAO TCP project (TCP/RAS/3311) “Capacity building for spread prevention and Management of Cassava Pink Mealybug in the greater Mekong subregion”. Ho Chi Minh City28Google Scholar
  26. Gao S, Qu J, Chua NH, Ye J (2010) A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas. Arch Virol 155(4):607–612.  https://doi.org/10.1007/s00705-010-0625-0 CrossRefPubMedGoogle Scholar
  27. García MM, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Database  https://doi.org/10.1093/database/bav118. http://scalenet.info/
  28. Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 89:141–199CrossRefPubMedGoogle Scholar
  29. Graziosi I, Minato N, Alvarez E, Ngo DT, Hoat TX, Aye TM, Pardo JM, Wongtiem P, Wyckhuys KA (2016) Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs. Pest Manag Sci 72(6):1071–1089.  https://doi.org/10.1002/ps.4250 CrossRefPubMedGoogle Scholar
  30. GSOVN – General Statistics Office of Vietnam (2016) https://gso.gov.vn/Default_en.aspx?tabid=491
  31. Hillocks RJ, Jennings DL (2003) Cassava brown streak disease: a review of present knowledge and research needs. Int J Pest Manage 49:225–234CrossRefGoogle Scholar
  32. Howeler R (2014) Sustainable management of cassava in Asia – from research to practiceGoogle Scholar
  33. Kawano K (2003) Thirty years of cassava breeding for productivity—biological and social factors for success. Crop Sci 43:1325–1335CrossRefGoogle Scholar
  34. Legg JP, Owor B, Sseruwagi P, Ndunguru J (2006) Cassava Mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic. Adv Virus Res 67:355–418.  https://doi.org/10.1016/s0065-3527(06)67010-3 CrossRefPubMedGoogle Scholar
  35. Mak S (2012) Overview of Agricultural Extension System in Cambodia. Réseau FAR, Atelier Yaoundé, 20–22 November 2012Google Scholar
  36. Matile-Ferrero D (1977) Une cochenille nouvelle nuisible au manioc en Afrique Équatoriale, Phenacoccus manihoti n. Sp. (Hom., Coccoidea, Pseudococcidae). [A new pest scale insect on manioc in equatorial Africa, Phenacoccus manihoti n. sp. (Hom.: Coccoidea, Pseudococcidae)]. Annales de la Société Entomologique de France 13:145–152Google Scholar
  37. Matsuura A, Tamura M, Shima S (2005) Relationship between mesh size of insect-proof nets and invasion prevention effect for the silverleaf whitefly. Kyushu PI Prot Res 51:64–68CrossRefGoogle Scholar
  38. Miller DR, Miller GL (2002) Redescription of Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Coccoidea: Pseudococcidae), including descriptions of the immature stages and adult male. Proc Entomol Soc Wash 104:1–23Google Scholar
  39. Miller DR, Williams DJ, Hamon AB (1999) Notes on a new mealybug (Hemiptera: Coccoidea: Pseudococcidae) pest in Florida and the Caribbean: the papaya mealybug, Paracoccus marginatus Williams and Granara de Willink. Insecta Mundi 13:179–181Google Scholar
  40. Ministry of Agriculture, Forestry and Fisheries in Cambodia (2001) Annual reports of the Ministry of Agriculture, Fisheries, and ForestrieGoogle Scholar
  41. Ministry of Agriculture, Forestry and Fisheries in Cambodia (2015) Cassava handbook. China-Cambodia-UNDP Trilateral Cooperation Cassava Project Phase IIGoogle Scholar
  42. Ministry of Agriculture, Forestry, and Fisheries in Cambodia (2015) Agricultural extension policy in Cambodia, 2015Google Scholar
  43. Ministry of Agriculture, Forestry and Fisheries in Cambodia (2016) Annual reports of the Ministry of Agriculture, Fisheries, and ForestriesGoogle Scholar
  44. Muniappan R, Shepard BM, Watson GW, Carner GR, Sartiami D, Rauf A, Hammig MD (2008) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. J Agric Urban Entomol 25:37–40CrossRefGoogle Scholar
  45. Myrick S, Norton GW, Selvaraj KN, Natarajan K, Muniappan R (2014) Economic impact of classical biological control of papayamealybug in India. Crop Prot 56:82–86CrossRefGoogle Scholar
  46. Nguyen VB (2012) Agricultural extension and research in Vietnam_ its roles, problems and opportunities. Paper presented at Roundtable Consultation on Agricultural Extension, Beijing, March 15–17, 2012Google Scholar
  47. Nolt B, Pineda B, Velasco AC (1992) Surveys of cassava plantations in Colombia for virus and virus-like diseases. Plant Pathol 41:348–354CrossRefGoogle Scholar
  48. Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645–1658.  https://doi.org/10.1093/pcp/pcn154 CrossRefPubMedGoogle Scholar
  49. Office of Agricultural Economics (2016a) Situation of production and marketing weekly. http://www.oae.go.th/ewt_news.php?nid=22930&filename=index
  50. Office of Agricultural Economics (2016b) Situation of agriculture product and trends 2016. http://www.oae.go.th/download/document_tendency/journalofecon2559.pdf
  51. Office of Agricultural Economics (2016c) Import Export product. http://www.oae.go.th/oae_report/export_import/export_result.php
  52. Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723CrossRefGoogle Scholar
  53. Oliveira SAS, Abreu EFM, Araújo TS, Oliveira EJ, Andrade EC, Garcia JMP, Álvarez E (2014) First report of a 16SrIII-L phytoplasma associated with Frogskin disease in cassava (Manihot esculenta Crantz) in Brazil. Plant Dis 98:153–153.  https://doi.org/10.1094/pdis-05-13-0499-pdn CrossRefGoogle Scholar
  54. Otti G, Bouvaine S, Kimata B, Mkamillo G, Kumar PL, Tomlins K, Maruthi MN (2016) High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants. J Appl Microbiol 120:1346–1356CrossRefPubMedGoogle Scholar
  55. Ou W, Li M, Tin MA, Sinath S (2016) Current situation of cassava production, constraints and opportunities in Cambodia. Agric For Fish 5:64.  https://doi.org/10.11648/j.aff.20160503.16 CrossRefGoogle Scholar
  56. Parsa S, Kondo T, Winotai A (2012) The cassava mealybug (Phenacoccus manihoti) in Asia: first records, potential distribution, and an identification key. PLoS One 7(10):e47675.  https://doi.org/10.1371/journal.pone.0047675 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pham TB et al (1996) Socio-economic aspects of cassava production. A benchmark study on cassava production, processing and marketing in Vietnam. Proceedings of a workshop held in Hanoi, Vietnam, Oct 29–31, 1992, CIAT, 1996, pp 113–158Google Scholar
  58. Pineda BJU, Lozano JC (1983) La enfermedad “Cuero de Sapo” en yuca (Manihot esculenta Crantz). ASIAVA 4:10–12Google Scholar
  59. Rajinimala N, Rabindran R (2007) First report of Indian cassava mosaic virus on bittergourd (Momordica charantia) in Tamil Nadu, India. Aust Plant Dis Notes 2:81–82CrossRefGoogle Scholar
  60. Sartiami D, Watson GW, NM M, Hanifah YM, BI A (2015) First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa 3957(2):235–238.  https://doi.org/10.11646/zootaxa.3957.2.8 CrossRefPubMedGoogle Scholar
  61. Saunders K, Salim N, Mali VR, Malathi VG, Briddon R, Markham PG, Stanley J (2002) Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293(1):63–74.  https://doi.org/10.1006/viro.2001.1251 CrossRefPubMedGoogle Scholar
  62. Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, Utsumi Y, Sakurai T, Seki M, Narangajavana J (2015) Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Plant Mol Biol 88:531–543.  https://doi.org/10.1007/s11103-015-0340-z CrossRefPubMedGoogle Scholar
  63. Srivastava A, Kumar K, Jaidi M (2015) Molecular characterization of a new begomovirus associated with leaf yellow mosaic disease of Jatropha curcas in India. Arch Virol 160:1359–1362CrossRefPubMedGoogle Scholar
  64. Storey HH (1936) Virus diseases of East African plants. VI-A progress report on studies of the disease of cassava. East Afr Agric J 2:34–39Google Scholar
  65. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036.  https://doi.org/10.1126/science.1141753 CrossRefPubMedGoogle Scholar
  66. Téllez LC, Pardo JM, Zacher M, Torres A, Álvarez E (2016) First report of a 16SrIII phytoplasma associated with Frogskin disease in Cassava (Manihot esculenta) in Paraguay. Plant Dis 100:1492–1492.  https://doi.org/10.1094/pdis-09-15-1102-pdn CrossRefGoogle Scholar
  67. Thresh JM, Fargette D, Otim-Nape GW (1994) The viruses and virus diseases of cassava in Africa. Afr Crop Sci J 2:459–478Google Scholar
  68. Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M (2012a) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 19:335–345.  https://doi.org/10.1093/dnares/dss016 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Utsumi Y, Sakurai T, Umemura Y, Ayling S, Ishitani M, Narangajavana J, Sojikul P, Triwitayakorn K, Matsui M, Manabe R, Shinozaki K, Seki M (2012b) RIKEN cassava initiative: establishment of a cassava functional genomics platform. Trop Plant Biol 5:110–116.  https://doi.org/10.1007/s12042-011-9089-y CrossRefGoogle Scholar
  70. Utsumi Y, Tanaka M, Kurotani A, Yoshida T, Mochida K, Matsui A, Ishitani M, Sraphet S, Whankaew S, Asvarak T, Narangajavana J, Triwitayakorn K, Sakurai T, Seki M (2016) Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. J Plant Res 129:711–726.  https://doi.org/10.1007/s10265-016-0828-x CrossRefPubMedGoogle Scholar
  71. van Brunschot SL, Gambley CF, De Barro PJ, Grams R, Thomas JE, Henderson J, Drenth A, Geering ADW (2013) Panel of real-time PCRs for the multiplexed detection of two tomato-infecting begomoviruses and their cognate whitefly vector species. Plant Pathol 62:1132–1146CrossRefGoogle Scholar
  72. Wang HL, Cui XY, Wang XW, Liu SS, Zhang ZH, Zhou XP (2016) First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis 100:1029–1029.  https://doi.org/10.1094/pdis-10-15-1228-pdn CrossRefGoogle Scholar
  73. Williams DJ, Granara de Willink MC (1992) Mealybugs of Central and South America. CAB International, London, p 635Google Scholar
  74. Winotai A, Goergen G, Tamo M, Neuenschwander P (2010) Cassava mealybug has reached Asia. Biocontrol News and Information 31:10N–11NGoogle Scholar
  75. World Bank (2014) Assessment of economic losses of cassava production, World BankGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hiroki Tokunaga
    • 1
  • Tamon Baba
    • 2
  • Manabu Ishitani
    • 3
  • Kasumi Ito
    • 4
  • Ok-Kyung Kim
    • 5
  • Ham Le Huy 
    • 6
  • Hoang Khac Le
    • 7
  • Kensaku Maejima
    • 8
  • Shigeto Namba
    • 8
  • Keiko T. Natsuaki
    • 5
  • Dong Nguyen Van 
    • 9
  • Hy Huu Nguyen
    • 10
  • Nien Chau Nguyen
    • 7
  • Anh Vu Nguyen 
    • 9
  • Hisako Nomura
    • 11
    • 10
    • 12
    • 13
    • 14
    • 15
  • Motoaki Seki
    • 2
  • Pao Srean
    • 12
  • Hirotaka Tanaka
    • 11
    • 10
    • 12
    • 13
    • 14
    • 15
  • Bunna Touch
    • 12
  • Hoat Xuan Trinh
    • 13
  • Masashi Ugaki
    • 14
  • Ayaka Uke
    • 14
  • Yoshinori Utsumi
    • 1
  • Prapit Wongtiem
    • 15
  • Keiji Takasu
    • 11
    • 10
    • 12
    • 13
    • 14
    • 15
  1. 1.RIKEN, Center for Sustainable Resource ScienceKanagawaJapan
  2. 2.Faculty of HumanitiesKyushu UniversityFukuokaJapan
  3. 3.International Center for Tropical Agriculture (CIAT)CaliColombia
  4. 4.International Cooperation Centre for Agricultural EducationNagoya UniversityNagoyaJapan
  5. 5.Graduate School of AgricultureTokyo University of AgricultureTokyoJapan
  6. 6.National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI)HanoiVietnam
  7. 7.Faculty of AgronomyNong Lam UniversityHo Chi MinhVietnam
  8. 8.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  9. 9.International Laboratory for Cassava Molecular Breeding, International Center for Tropical Agriculture (CIAT), c/o National Key Laboratory for Plant Cell TechnologyAgricultural Genetics Institute (AGI)HanoiVietnam
  10. 10.Hung Loc Agricultural Research Center (HLARC)Dong NaiVietnam
  11. 11.Faculty of AgricultureKyushu UniversityFukuokaJapan
  12. 12.University of Battambang (UBB)BattambangCambodia
  13. 13.Plant Protection Research Institute (PPRI)HanoiVietnam
  14. 14.Graduate School of Frontier SciencesThe University of TokyoChibaJapan
  15. 15.Department of AgricultureRayong Field Crops Research Center (RYFCRC)RayongThailand

Personalised recommendations