Advertisement

Development of Rice Promising Lines Using Genomic Technology and Information in Vietnam

  • Atsushi Yoshimura
  • Hideshi Yasui
  • Pham Van Cuong
  • Motoyuki Ashikari
  • Enric E. Angeres
  • Nguyen Van Hoan
  • Tran Tan Phuong
  • Yoshiyuki Yamagata
  • Norimitsu Hamaoka
  • Kazuyuki Doi
  • Tang Thi Hanh
  • Mai Van Tan
  • Nguyen Quoc Trung
  • Nobuyuki Iseri
  • Kazuo Ogata
Chapter

Abstract

A project for “The Development of Crop Genotypes for the midlands and Mountain Areas of North Vietnam” was implemented from 2011 to 2015 under the scheme of Science and Technology Research Partnership for Sustainable Development (SATREPS) Project. Main objectives of the project were to develop promising lines of rice, which adapt to social and natural environmental conditions in Northern Vietnam. Based on the useful gene donors and DNA marker information provided by Japanese institutions, the project attempted to rapidly develop rice promising lines possessing useful agronomic traits such as short growth duration, high yield, and disease and insect resistance. Here, we introduce the background, progress and outputs of the project.

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles RR, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745CrossRefPubMedGoogle Scholar
  2. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171CrossRefPubMedGoogle Scholar
  3. Fujita D, Yoshimura A, Yasui H (2010) Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cincticeps Uhler) with the Taichung 65 genetic background in rice (Oryza sativa L.). Breed Sci 60:18–27CrossRefGoogle Scholar
  4. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001CrossRefPubMedGoogle Scholar
  5. Furuta T, Komeda N, Asano K, Uehara K, Gamuyao R, Angeles-Shim RB, Nagai K, Doi K, Wang DR, Yasui H, Yoshimura A, Wu JZ, McCouch SR, Ashikari M (2015) Convergent loss of awn in two cultivated rice species Oryza sativa and Oryza glaberrima is caused by mutations in different loci. G3・Genes Genomes Genetics 5(11):2267–2274Google Scholar
  6. Hamaoka N, Yasui H, Yamagata Y, Inoue Y, Furuya N, Araki T, Yoshimura A (2017) A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increased photosynthetic water use efficiency in rice. Rice 10:20CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45(4):462–465CrossRefPubMedGoogle Scholar
  8. Kurokawa Y, Noda T, Yamagata Y, Angeles-Shim RB, Sunohara H, Uehara K, Furuta T, Nagai K, Jena KK, Yasui H, Yoshimura A, Ashikari M, Doi K (2016) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Sci 242:131–139CrossRefPubMedGoogle Scholar
  9. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefPubMedGoogle Scholar
  10. Myint D, Fujita M, Matsumura T, Sonoda A, Yoshimura A, Yasui H (2012) Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52. Theor Appl Genet 124:495–504CrossRefPubMedGoogle Scholar
  11. Porter BW, Chittoor JM, Yano M, Sasaki T, White FF (2003) Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7. Crop Sci 43:1484–1492CrossRefGoogle Scholar
  12. Shomura T, Izawa K, Ebana T, Ebitani H, Kanegae S, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028CrossRefPubMedGoogle Scholar
  13. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806CrossRefPubMedGoogle Scholar
  14. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630CrossRefPubMedGoogle Scholar
  15. Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu JZ, Kitano H, Sakakibara H, Jacpbsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Nat Acad Sci U S A 112(1):76–81CrossRefGoogle Scholar
  16. Srinivasan TS, Almazan MLP, Bernal CC, Fujita D, Ramal AF, Yasui H, MSubbarayalu MK, Horgan FG (2015) Current utility of the BPH25 and BPH26 genes and possibilities for further resistance against plant- and leafhoppers from the donor cultivar ADR52. Appl Entomol Zool 50:533–543CrossRefGoogle Scholar
  17. Sun X, Yang Z, Wang S, Zhang Q (2003) Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet 106:683–687CrossRefPubMedGoogle Scholar
  18. Takano-Kai T, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1134–1323CrossRefGoogle Scholar
  19. Takano-Kai N, Doi K, Yoshimura A (2011) GS3 participates in stigma exsertion as well as seed length in rice. Breed Sci 61(3):244–250CrossRefGoogle Scholar
  20. Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H (2014) Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4:5872CrossRefPubMedPubMedCentralGoogle Scholar
  21. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893CrossRefPubMedGoogle Scholar
  22. Yamasaki M, Yoshimura A, Yasui H (2003) Genetic basis of ovicidal response to whitebacked planthopper (Sogatella furcifera Horváth) in rice (Oryza sativa L.), Mol. Breed 12:133–143CrossRefGoogle Scholar
  23. Yara A, Nguyen PC, Matsumura M, Yoshimura A, Yasui H (2010) Development of near-isogenic lines for BPH25(t) and BPH26(t), conferring resistance to brown planthopper, Nilaparvata lugens (Stål.) in the Indica rice variety ADR52. Breed Sci 60:639–647CrossRefGoogle Scholar
  24. Yazawa S, Yasui H, Yoshimura A, Iwata N (1998) RFLP mapping of genes for resistance to green rice leafhopper (Nephotettix cincticeps Uhler) in rice cultivar DV85 using near isogenic lines. Sci Bull Fac Agric Kyushu Univ 52:169–175Google Scholar
  25. Zhang Y, Wang J, Pan J, Gu Z, Chen X, Jin Y, Liu F, Zhang H, Ma B (2009) Identification and molecular mapping of the rice bacterial blight resistance gene allelic to Xa7 from an elite restorer line Zhenhui 084. Eur J Plant Pathol 125:235–244CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Atsushi Yoshimura
    • 1
  • Hideshi Yasui
    • 1
  • Pham Van Cuong
    • 2
  • Motoyuki Ashikari
    • 3
  • Enric E. Angeres
    • 1
  • Nguyen Van Hoan
    • 2
  • Tran Tan Phuong
    • 4
  • Yoshiyuki Yamagata
    • 1
  • Norimitsu Hamaoka
    • 1
  • Kazuyuki Doi
    • 5
  • Tang Thi Hanh
    • 2
  • Mai Van Tan
    • 2
  • Nguyen Quoc Trung
    • 2
  • Nobuyuki Iseri
    • 6
  • Kazuo Ogata
    • 7
  1. 1.Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Vietnam National University of AgricultureHanoiVietnam
  3. 3.Biosciences and Biotechnology CenterNagoya UniversityNagoyaJapan
  4. 4.Soc Trang Department of Agriculture and Rural DevelopmentSoc Trang ProvinceVietnam
  5. 5.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  6. 6.DCGV (Development of Crop Genotype in Vietnam) projectJapan International Cooperation AgencyHanoiVietnam
  7. 7.Institute of Tropical AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations