Plant Growth-Promoting Microbes: Contribution to Stress Management in Plant Hosts

  • Krishna Sundari SattirajuEmail author
  • Srishti Kotiyal
  • Asmita Arora
  • Mahima Maheshwari


Plants encounter various challenges that impact on growth and development. In the agricultural scenario, any limiting condition can transform into serious economic losses. Conventional methods employed to deal with biotic and abiotic stresses, including chemical methods, plant breeding, genetic engineering and other modern practices, present a variety of practical concerns. For example, transgenic plants can lead to selection pressure on the parasites thus providing a means to develop resistance. Hence a shift towards exploring the potentialities in plant growth-promoting microbes (PGPM) as a part of mainstream agricultural practices is imperative. In this review, we focus on PGPM (inclusive term for plant growth-promoting rhizobacteria and fungi), which, apart from their plant growth-promoting activities, also play a role in plant diseases control as well as in alleviating the impact of abiotic stresses. A deeper understanding of the mechanisms by which PGPM modify plant stress responses to boost their resistance and the nuances of the PGPM-host interactions would lead to increased acceptance of PGPM in agricultural applications.


Plant growth-promoting microbes (PGPM) Biotic stress Abiotic stress Biotechnological interventions ISR SAR Genetically modified PGPB 


  1. Akocak, P. B., Churey, J. J., & Worobo, R. W. (2015). Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Bioscience, 10, 48–58.CrossRefGoogle Scholar
  2. Alfano, G., Ivey, M. L. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., Kamoun, S., & Hoitink, H. A. J. (2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Biological Control, 97, 429–437.Google Scholar
  3. Alizadeh, O., Azarpanah, A., & Ariana, L. (2013). Induction and modulation of resistance in crop plants against disease by bioagent fungi (arbuscular mycorrhiza) and hormonal elicitors and plant growth promoting bacteria. International Journal of Farming and Allied Sciences, 2, 982–998.Google Scholar
  4. Amaresan, N., Kumar, K., Madhuri, K., & Usharani, G. K. (2016). Isolation and characterization of salt tolerant plant growth promoting rhizobacteria from plants grown in tsunami affected regions of Andaman and Nicobar Islands. Geomicrobiology, J36(20), 942–947.CrossRefGoogle Scholar
  5. Arora, R. (2004). Adaptations and responses of woody plants to environmental stresses (pp. 1–5). New York: IOS Press.CrossRefGoogle Scholar
  6. Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620.CrossRefGoogle Scholar
  7. Audenaert, K., De Meyer, G., & Höfte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 105, 513–517.CrossRefGoogle Scholar
  8. Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., & Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99, 141–149.CrossRefGoogle Scholar
  9. Balconi, C., Stevanato, P., Motto, M., & Biancardi, E. (2012). Breeding for biotic stress resistance/tolerance in plants. In M. Ashraf, M. Ozturk, M. S. A. Ahmad, & A. Aksoy (Eds.), Crop production for agricultural improvement (pp. 57–114). Springer.Google Scholar
  10. Barda, O., Shalev, O., Alster, S., Buxdorf, K., Gafni, A., & Levy, M. (2015). Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Disease, 99, 621–626.CrossRefGoogle Scholar
  11. Barka, E. A., Belarbi, A., Hachet, C., Nowak, J., & Audran, J. C. (2000). Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiology Letters, 186, 91–95.CrossRefGoogle Scholar
  12. Basja, N. (2013). The effect of agricultural practices on resident soil microbial communities: Focus on biocontrol and biofertilization. In B. FJD (Ed.), Molecular microbial ecology of the rhizosphere (pp. 687–700). Hoboken: Wiley Inc.Google Scholar
  13. Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultra structure and cytochemistry of the host response. Planta, 204, 153–168.CrossRefGoogle Scholar
  14. Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4, 343–350.CrossRefGoogle Scholar
  15. Bottini, R., Cassán, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497–503.CrossRefGoogle Scholar
  16. Boualem, A., Dogimont, C., & Bendahmane, A. (2015). The battle for survival between viruses and their host plants. Current Opinion in Virology, 17, 32–38.CrossRefGoogle Scholar
  17. Brooks, D. S., Gonzalez, C. F., Appel, D. N., & Filer, T. H. (1994). Evaluation of endophytic bacteria as potential biological-control agents for Oak Wilt. Biological Control, 4, 373–381.CrossRefGoogle Scholar
  18. Castillo, U., Strobel, G., Ford, E., Hess, W., Porter, H., Jensen, J., Albert, H., Robison, R., Condron, M., Teplow, D., Stevens, D., & Yaver, D. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148, 2675–2685.CrossRefGoogle Scholar
  19. Chandanie, W. A., Kubota, M., & Hyakumachi, M. (2006). Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil, 286, 209–217.CrossRefGoogle Scholar
  20. Chatterton, S., Sutton, J. C., & Boland, G. J. (2004). Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biological Control, 30, 360–373.CrossRefGoogle Scholar
  21. Chen, C., Bauske, E. M., Musson, G., Rodriguezkabana, R., & Kloepper, J. W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5, 83–91.CrossRefGoogle Scholar
  22. Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., & Junge, H. (2007). Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25, 1007–1014.CrossRefGoogle Scholar
  23. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 94951–94959.Google Scholar
  24. Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163–177.CrossRefGoogle Scholar
  25. Dalal, J., & Kulkarni, N. (2013). Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Current Research in Microbiology and Biotechnology, 1, 62–69.Google Scholar
  26. De Meyer, G., & Höfte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7 NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Biological Control, 87, 588–593.Google Scholar
  27. De Souza, R., Sant’Anna, F. H., Ambrosini, A., Tadra-Sfeir, M., Faoro, H., Pedrosa, F. O., Souza, E. M., & Passaglia, L. M. P. (2015). Genome of Pseudomonas sp. FeS53a, a putative plant growth- promoting bacterium associated with rice grown in iron-stressed soils. Genome Announcements, 3, 1–2.Google Scholar
  28. Domingo, J., & Bordonaba, J. G. (2011). A literature review on the safety assessment of genetically modified plants. Environment International, 37, 734–742.CrossRefGoogle Scholar
  29. Dong, Y., Zhang, X., Xu, J., & Zhang, L. (2004). Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Applied and Environmental Microbiology, 70, 2954–2960.CrossRefGoogle Scholar
  30. Downey, R. K. (2003). Ecological, genetic, and social factors affecting environmental assessment of transgenic plants. In B. Bodling (Ed.), Environmental effects of transgenic plants: The scope and adequacy of regulation (pp. 17–33). Washington, DC: National Academy Press.Google Scholar
  31. Duque, A. S., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Farinha, A. P., Santos, D., Fevereiro, P., & de Sousa Araújo, S. (2013). Abiotic stress responses in plants: Unravelling the complexity of genes and networks to survive. In K. Vahdati (Ed.), Abiotic stress-plant responses and applications in agriculture (pp. 3–23). Rijeka: InTech.Google Scholar
  32. Elbeshehy, E. K. F., Youssef, S. A., & Elazzazy, A. M. (2015). Resistance induction in pumpkin Cucurbita maxima L. against watermelon mosaic potyvirus by plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 25, 525–542.CrossRefGoogle Scholar
  33. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T., & Huang, J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research International, 22, 4907–4921.CrossRefGoogle Scholar
  34. Filippi, M. C. C., Silva, G. B., Silva-Lobo, V. L., Cortes, M. V. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.CrossRefGoogle Scholar
  35. Fridlender, M., Inbar, J., & Chet, I. (1993). Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25, 1211–1221.CrossRefGoogle Scholar
  36. Fröhlich, A., Buddrus-Schiemann, K., Durner, J., Hartmann, A., & von Rad, U. (2012). Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. Journal of Plant Interactions, 7, 1–9.CrossRefGoogle Scholar
  37. Gamalero, E., Berta, G., Massa, N., Glick, B. R., & Lingua, G. (2010). Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Journal of Applied Microbiology, 108, 236–245.CrossRefGoogle Scholar
  38. García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Journal, 2, 183–205.CrossRefGoogle Scholar
  39. Glandorf, C. M., Verheggen, P., Jansen, T., Jorritsma, J. W., Smit, E., Leeflang, P., Wernars, K., Thomashow, L. S., Laureijs, E., Thomas-Oates, J. E., Bakker, P., & Loon, L. C. V. (2001). Effect of genetically modified pseudomonas putida WCS358R on the fungal rhizosphere microflora of field-grown wheat. Applied and Environmental Microbiology, 67(8), 3371–3378.CrossRefGoogle Scholar
  40. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, Article ID 963401, 15 pages.Google Scholar
  41. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.CrossRefGoogle Scholar
  42. Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Tomiyama, C. A., Farmer, L., Dangl, J. L., & Grant, S. R. (2008). The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Molecular Plant-Microbe Interactions, 21, 361–370.CrossRefGoogle Scholar
  43. Gopalakrishnan, S., Srinivas, V., Alekhya, G., Prakash, B., Kudapa, H., & Varshney, R. K. (2015). Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Organic Agriculture, 5, 123–133.CrossRefGoogle Scholar
  44. Grandlic CJ (2008) Plant growth-promoting bacteria suitable for the phytostabilization of mine tailings. Dissertation, The University of Arizona.Google Scholar
  45. Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society, B363, 543–555.CrossRefGoogle Scholar
  46. Horinouchi, H., Muslim, A., & Hyakumachi, M. (2010). Short communication biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti gf183. Journal of Plant Pathology, 92, 249–254.Google Scholar
  47. Hossain, M. M., Sultana, F., Miyazawa, M., & Hyakumachi, M. (2014). The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of Oleo Science, 63, 391–400.CrossRefGoogle Scholar
  48. Hossain, M. J., Ran, C., Liu, K., Ryu, C. M., Ivey, C. R., Williams, M. A., Hassan, M. K., Choi, S. K., Jeong, H., Newman, M., Kloepper, J. W., & Liles, M. R. (2015). Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Frontiers in Plant Science, 631(6), 1–14.Google Scholar
  49. Kamensky, M., Ovadis, M., Chet, I., & Chernin, L. (2003). Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry, 35, 323–331.CrossRefGoogle Scholar
  50. Kilic-Ekici, O., & Yuen, G. Y. (2004). Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. BiolControl, 30, 446–455.Google Scholar
  51. Killani, A. S., Abaidoo, R. C., Akintokun, A. K., & Abiala, M. A. (2011). Antagonistic effect of indigenous bacillus subtilis on root−/soil-borne fungal pathogens of cowpea. Research, 3, 11–18.Google Scholar
  52. Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., & Doke, N. (2001). Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: Lignification and superoxide generation. European Journal of Plant Pathology, 107, 523–533.CrossRefGoogle Scholar
  53. Liu, L., Kloepper, J. W., & Tuzun, S. (1995). Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology, 85, 695–698.CrossRefGoogle Scholar
  54. Malathi, S. (2015). Biological control of onion basal rot caused by Fusarium oxysporum f. sp. cepae. Asian Journal of Biological Sciences, 10, 21–26.Google Scholar
  55. Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A. F., El-Behairy, U. A., Sorlini, C., Cherif, A., Zocchi, G., & Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7, 1–14.CrossRefGoogle Scholar
  56. Mavrodi, O. V., Mavrodi, D. V., Weller, D. M., Linda, S., & Thomashow, L. S. (2006). Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Applied and Environmental Microbiology, 72(11), 7111–7122.CrossRefGoogle Scholar
  57. Muñoz, Z., Moret, A., & Garcés, S. (2008). The use of Verticillium dahliae and Diplodia scrobiculata to induce resistance in Pinus halepensis against Diplodia pinea infection. European Journal of Plant Pathology, 120, 331–337.CrossRefGoogle Scholar
  58. Murali, M., Amruthesh, K., Sudisha, J., & SNaH, S. (2012). Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. Journal of Phytology, 4, 30–36.Google Scholar
  59. Nagpure, A., Choudhary, B., Kumar, S., & Gupta, R. K. (2013). Isolation and characterization of chitinolytic Streptomyces sp. MT7 and its antagonism towards wood-rotting fungi. Annales de Microbiologie, 64, 531–541.CrossRefGoogle Scholar
  60. Nagpure, A., Choudhary, B., & Gupta, R. K. (2014). Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. Journal of Basic Microbiology, 54, 397–407.CrossRefGoogle Scholar
  61. Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9, e86882.CrossRefGoogle Scholar
  62. Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3, 1–7.CrossRefGoogle Scholar
  63. Ortbauer, M. (2013). Abiotic stress adaptation: Protein folding stability and dynamics. In V. Kourosh (Ed.), Abiotic stress – plant responses and applications in agriculture. Rijeka: InTech. Scholar
  64. Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(7), 1–12.Google Scholar
  65. Pontes, A. P., de Souza, R., Granada, C. E., & Passaglia, L. M. P. (2015). Screening of plant growth promoting bacteria associated with barley plants (Hordeum vulgare L.) cultivated in South Brazil. Biota Neotropica, 15, e20140105.CrossRefGoogle Scholar
  66. Porcel, R., Zamarreño, A. M., García-Mina, J. M., & Aroca, R. (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14, 36.CrossRefGoogle Scholar
  67. Rajkumar, M., & Helena, F. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.CrossRefGoogle Scholar
  68. Razinger, J., Lutz, M., Schroers, H. J., Urek, G., & Grunder, J. (2014). Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. Journal of Economic Entomology, 107, 1348–1354.CrossRefGoogle Scholar
  69. Rodriguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2007). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting rhizobacteria. Developments in Plant and Soil Sciences, 102, 15–21.CrossRefGoogle Scholar
  70. Ryu, C. M., Murphy, J. F., Mysore, K. S., & Kloepper, J. W. (2004). Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signalling pathway. The Plant Journal, 39, 381–392.CrossRefGoogle Scholar
  71. Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A., & Casas-Flores, S. (2011). The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. Journal of Microbiology and Biotechnology, 21, 686–696.CrossRefGoogle Scholar
  72. Salas-Marina, M. A., Isordia-Jasso, M. I., Islas-Osuna, M. A., Delgado-Sánchez, P., Jiménez-Bremont, J. F., Rodríguez-Kessler, M., Rosales-Saavedra, M. T., Herrera-Estrella, A., & Casas-Flores, S. (2015). The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science, 6(77), 1–13.Google Scholar
  73. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99.CrossRefGoogle Scholar
  74. Sarathambal, C., Ilamurugu, K., Priya, L. S., & Barman, K. K. (2014). A review on weeds as source of novel plant growth promoting microbes for crop improvement. Journal of Applied and Natural Sciences, 6, 880–886.CrossRefGoogle Scholar
  75. Schuler, T. H., Poppy, G. M., Kerry, B. R., & Denholm, I. (1999). Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends in Biotechnology, 17, 210–216.CrossRefGoogle Scholar
  76. Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., DeMason, D. A., & Hirsch, A. M. (2013). Bacillus simplex-A little known PGPB with anti-fungal activity alters pea-legume root architecture and nodule morphology when co-inoculated with Rhizobium leguminosarum bv. viciae. Agronomy, 3, 595–620.CrossRefGoogle Scholar
  77. Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.CrossRefGoogle Scholar
  78. Shivanna, M. B., Meera, M. S., & Hyakumachi, M. (1996). Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection, 15, 497–504.CrossRefGoogle Scholar
  79. Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of jasmonic acid/ethylene signalling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.CrossRefGoogle Scholar
  80. Siddiqui, I. A., & Shaukat, S. S. (2002). Rhizobacteria-mediated induction of systemic resistance in tomato against Meloidogyne javanica. Journal of Phytopathology, 150, 469–472.CrossRefGoogle Scholar
  81. Silva, D. C. S., Weatherhead, E. K., Knox, J. W., & Rodriguez-Diaz, J. A. (2007). Predicting the impacts of climate change- a case study of paddy irrigation water requirements in Sri Lanka. Agricultural Water Management, 93, 19–29.CrossRefGoogle Scholar
  82. Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.CrossRefGoogle Scholar
  83. Sivakumar, G., & Sharma, R. C. (2003). Induced biochemical changes due to seed bacterization by Pseudomonas fluorescens in maize plants. Indian Phytopathology, 56, 134–137.Google Scholar
  84. Spoel, S., & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host & Microbe, 3, 348–351.CrossRefGoogle Scholar
  85. Sripontan, Y., Hung, M., Young, C., & Hwang, S. (2014). Effects of soil type and plant growth promoting microorganism on cabbage and Spodoptera litura performance. Journal of Agriculture and Forestry, 63, 153–161.Google Scholar
  86. Timmusk, S., & Wagner, E. (1999). The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Phytopathology, 12, 951–959.Google Scholar
  87. Tiwari, P. K., & Thrimurthy, V. S. (2007). Isolation and characterization of the Pseudomonas fluorescens from rhizosphere of different crops. Journal of Mycology and Plant Pathology, 37, 231–234.Google Scholar
  88. Umashankari, J., & Sekar, C. (2011). Comparative evaluation of different bio-formulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in rice P. oryzae pathosystem under upland condition. Current Botany, 2, 12–17.Google Scholar
  89. Van Loon, L. C. (2007). Plant responses to plant growth promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  90. Viets, F. G., & Lunin, J. (2009). The environmental impact of fertilizers. Critical Reviews in Environmental Control, 5, 423–453.CrossRefGoogle Scholar
  91. Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16, 400–412.CrossRefGoogle Scholar
  92. Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 10754–10773.CrossRefGoogle Scholar
  93. Yadav, J., Verma, J. P., & Tiwari, K. N. (2011). Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 4, 291–299.CrossRefGoogle Scholar
  94. Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.Google Scholar
  95. Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25, 139–150.CrossRefGoogle Scholar
  96. Zhou, Z., Zhang, C., Zhou, W., Li, W., Chu, L., Yan, J., & Li, H. (2014). Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interactions, 9, 585–591.CrossRefGoogle Scholar
  97. Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33, 406–413.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Krishna Sundari Sattiraju
    • 1
    Email author
  • Srishti Kotiyal
    • 2
  • Asmita Arora
    • 1
  • Mahima Maheshwari
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Evason lab, Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations